提升DNN参数准确度:MILA提出贝叶斯超网络

深度神经网络(DNN)参数中简单而强大的贝叶斯推理(Bayesian inference)技术有可能大大扩展深度学习技术的应用范围。在现实世界的应用中,意外错误可能会造成危险和财产损失,而预料之内的问题则可以让智能体寻求人类的指导(以主动学习的形式),或是采取一些安全的默认行为(如关机)来进行规避。近日,来自蒙特利尔 MILA、Element AI 和麦吉尔大学等机构的学者共同提出了「贝叶斯超网络
相关文章
相关标签/搜索