本文使用的编程语言是 Node.js,链接 MongoDB 的模块用的是mongoose。可是,本文介绍的方法适用于其余编程语言及其对应的 MongoDB 模块。javascript
也许,在遍历 MongoDB 集合时,咱们会这样写:html
const Promise = require("bluebird"); function findAllMembers() { return Member.find(); } async function test() { const members = await findAllMembers(); let N = 0; await Promise.mapSeries(members, member => { N++; console.log(`name of the ${N}th member: ${member.name}`); }); console.log(`loop all ${N} members success`); } test();
注意,咱们使用的是 Bluebird 的mapSeries而非map,members 数组中的元素是一个一个处理的。这样就够了吗?java
当 Member 集合中的 document 很少时,好比只有 1000 个时,那确实没有问题。可是当 Member 集合中有 1000 万个 document 时,会发生什么呢?以下:node
<--- Last few GCs ---> rt of marking 1770 ms) (average mu = 0.168, current mu = 0.025) finalize [5887:0x43127d0] 33672 ms: Mark-sweep 1398.3 (1425.2) -> 1398.0 (1425.7) MB, 1772.0 / 0.0 ms (+ 0.1 ms in 12 steps since start of marking, biggest step 0.0 ms, walltime since start of marking 1775 ms) (average mu = 0.088, current mu = 0.002) finalize [5887:0x43127d0] 35172 ms: Mark-sweep 1398.5 (1425.7) -> 1398.4 (1428.7) MB, 1496.7 / 0.0 ms (average mu = 0.049, current mu = 0.002) allocation failure scavenge might not succeed <--- JS stacktrace ---> FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of memory 1: 0x8c02c0 node::Abort() [node] 2: 0x8c030c [node] 3: 0xad15de v8::Utils::ReportOOMFailure(v8::internal::Isolate*, char const*, bool) [node] 4: 0xad1814 v8::internal::V8::FatalProcessOutOfMemory(v8::internal::Isolate*, char const*, bool) [node] 5: 0xebe752 [node] 6: 0xebe858 v8::internal::Heap::CheckIneffectiveMarkCompact(unsigned long, double) [node] 7: 0xeca982 v8::internal::Heap::PerformGarbageCollection(v8::internal::GarbageCollector, v8::GCCallbackFlags) [node] 8: 0xecb2b4 v8::internal::Heap::CollectGarbage(v8::internal::AllocationSpace, v8::internal::GarbageCollectionReason, v8::GCCallbackFlags) [node] 9: 0xecba8a v8::internal::Heap::FinalizeIncrementalMarkingIfComplete(v8::internal::GarbageCollectionReason) [node] 10: 0xecf1b7 v8::internal::IncrementalMarkingJob::Task::RunInternal() [node] 11: 0xbc1796 v8::internal::CancelableTask::Run() [node] 12: 0x935018 node::PerIsolatePlatformData::FlushForegroundTasksInternal() [node] 13: 0x9fccff [node] 14: 0xa0dbd8 [node] 15: 0x9fd63b uv_run [node] 16: 0x8ca6c5 node::Start(v8::Isolate*, node::IsolateData*, int, char const* const*, int, char const* const*) [node] 17: 0x8c945f node::Start(int, char**) [node] 18: 0x7f84b6263f45 __libc_start_main [/lib/x86_64-linux-gnu/libc.so.6] 19: 0x885c55 [node] Aborted (core dumped)
可知,内存不足了。linux
打印find()返回的 members 数组可知,集合中全部元素都返回了,哪一个数组放得下 1000 万个 Object?git
将整个集合 find()所有返回,这种操做应该避免,正确的方法应该是这样的:github
function findAllMembersCursor() { return Member.find().cursor(); } async function test() { const membersCursor = await findAllMembersCursor(); let N = 0; await membersCursor.eachAsync(member => { N++; console.log(`name of the ${N}th member: ${member.name}`); }); console.log(`loop all ${N} members success`); } test();
使用cursor()方法返回 QueryCursor,而后再使用eachAsync()就能够遍历整个集合了,并且不用担忧内存不够。mongodb
QueryCursor是什么呢?不妨看一下 mongoose 文档:docker
A QueryCursor is a concurrency primitive for processing query results one document at a time. A QueryCursor fulfills the Node.js streams3 API, in addition to several other mechanisms for loading documents from MongoDB one at a time.编程
总之,QueryCursor 能够每次从 MongoDB 中取一个 document,这样显然极大地减小了内存使用。
这篇博客介绍的内容很简单,可是也很容易被忽视。若是你们测试一下,印象会更加深入一些。
测试代码很简单,你们能够查看Fundebug/loop-mongodb-big-collection。
个人测试环境是这样的:
1. 使用 Docker 运行 MongoDB
sudo docker run --net=host -d --name mongodb daocloud.io/library/mongo:3.2
2. 使用mgodatagen生成测试数据
使用 mgodatagen,1000 万个 document 能够在 1 分多钟生成!
下载 mgodatagen:https://github.com/feliixx/mgodatagen/releases/download/0.7.3/mgodatagen_linux_x86_64.tar.gz
解压以后,复制到/usr/local/bin 目录便可:
sudo mv mgodatagen /usr/local/bin
mgodatagen 的配置文件mgodatagen-config.json以下:
[ { "database": "test", "collection": "members", "count": 10000000, "content": { "name": { "type": "string", "minLength": 2, "maxLength": 8 }, "city": { "type": "string", "minLength": 2, "maxLength": 8 }, "country": { "type": "string", "minLength": 2, "maxLength": 8 }, "company": { "type": "string", "minLength": 2, "maxLength": 8 }, "email": { "type": "string", "minLength": 2, "maxLength": 8 } } } ]
执行mgodatagen -f mgodatagen-config.json
命令,便可生成 10000 万测试数据。
mgodatagen -f mgodatagen-config.json Connecting to mongodb://127.0.0.1:27017 MongoDB server version 3.2.13 collection members: done [====================================================================] 100% +------------+----------+-----------------+----------------+ | COLLECTION | COUNT | AVG OBJECT SIZE | INDEXES | +------------+----------+-----------------+----------------+ | members | 10000000 | 108 | _id_ 95368 kB | +------------+----------+-----------------+----------------+ run finished in 1m12.82s
查看 MongoDB,可知新生成的数据有 0.69GB,其实很小,可是使用 find()方法遍历会报错。
show dbs local 0.000GB test 0.690GB
3. 执行测试代码
两种不一样遍历方法的代码分别位于test1.js和test2.js。
Fundebug专一于JavaScript、微信小程序、微信小游戏、支付宝小程序、React Native、Node.js和Java线上应用实时BUG监控。 自从2016年双十一正式上线,Fundebug累计处理了10亿+错误事件,付费客户有Google、360、金山软件、百姓网等众多品牌企业。欢迎你们免费试用!
转载时请注明做者Fundebug以及本文地址: https://blog.fundebug.com/2019/03/21/how-to-visit-all-documents-in-a-big-collection-of-mongodb/