Mysql 索引原理及优化

Mysql 索引原理及优化

什么是索引

为何须要索引?html

  • 索引是数据表种一个或者多个列进行排序的数据结构
  • 索引可以大幅提高检索速度
  • 建立、更新索引自己也会耗费空间和时间
查找结构进化史
  • 线性查找:一个个找;实现简单;太慢
  • 二分查找:有序;简单;要求是有序的,插入特别慢
  • HASH查找:查询快;占用空间;不太适合存储大规模数据
  • 二叉查找树:插入和查询很快(log(n));没法存大规模数据,复杂度退化
  • 平衡树:解决 BST 退化问题,树是平衡的;节点很是多的时候,依然树高很高
  • 多路查找树:一个父亲多个孩子节点(度);节点过多树高不会特别深
  • 多路平衡查找树:B-Tree

关于这些查找结果的演示推荐:https://www.cs.usfca.edu/~galles/visualization/Algorithms.htmlsql

这个网站关于数据结构的演示很直观,咱们能够经过其中的动画来学习。数据结构

好比二叉查找树退化问题:学习

能够明显看到,因为咱们输入的数字是顺序增加的,二叉查找树变成了单边增加的线性结构,这就是复杂度退化。优化

平衡树(AVL)则没有这个问题:动画

什么是 B-Tree?
  • 多路平衡查找树(每一个节点最多 m(m>=2) 个孩子,称为 m 阶或者度)
  • 叶节点具备相同的深度
  • 节点的数据 key 从左到右是递增的

演示网站

B+Tree
  • Mysql 实际使用的 B+Tree 做为索引的数据结构
  • 只在叶子节点带有指向记录的指针(For what?能够增长树的度)
  • 叶子节点经过指针相连(For what?实现范围查询)

Mysql 建立索引类型
  • 普通类型(CREATE INDEX)
  • 惟一索引,索引列的值必须惟一(CREATE UNIQUE INDEX)
  • 多列索引
  • 主键索引(PRIMARY KEY),一个表只能有一个
  • 全文索引(FULLTEXT INDEX),InnoDB 不支持
何时建立索引
  • 常常用做查询条件的字段
  • 常常用做表链接的字段
  • 常常出如今 order by,group by 以后的字段
建立索引有哪些须要注意的?

最佳实践spa

  • 非空字段 NOT NULL,Mysql 很难对空值做查询优化
  • 区分度高,离散度大,做为索引的字段值尽可能不要有大量相同值
  • 索引的长度不要太长(比较耗费时间)
索引何时失效?

模糊匹配、类型隐转、最左匹配指针

  • 以 % 开头的 LIKE 语法,模糊搜索
  • 出现隐式类型转换(在 Python 这种动态语言查询中须要注意)
  • 没有知足最左前缀原则
什么是汇集索引和非汇集索引?
  • 汇集仍是非汇集指的是 B+Tree 叶节点存的是指针仍是数据记录
  • MyISAM 索引和数据分离,使用的是非汇集索引
  • InnoDB 数据文件就是索引文件,主键索引就是汇集索引

对好比下日志

汇集索引

非汇集索引

区别是在 B+Tree 的叶节点存储数据仍是指针 MyISAM 索引是非汇集的,InnoDB 主键索引是汇集索引

辅助索引

还有一个辅助索引,咱们也能够了解下。

辅助索引

如何排查慢查询

慢查询一般是缺乏索引,索引不合理或者业务代码实现所致

  • slow_query_log_file 开启而且查询慢查询日志
  • 经过 explain 排查索引问题
  • 调整数据修改索引;业务代码层限制不合理访问
相关文章
相关标签/搜索