常常看到有学习OpenCV不久的人提问,如何识别一些简单的几何形状与它们的颜色,其实经过OpenCV的轮廓发现与几何分析相关的函数,只需不到100行的代码就能够很好的实现这些简单几何形状识别与对象测量相关操做。本文就会演示给你们如何经过OpenCV 轮廓发现与几何分析相关函数实现以下功能:html
在具体代码实现与程序演示以前,咱们先要搞清楚一些概念。java
1. 轮廓(contours) app
什么是轮廓,简单说轮廓就是一些列点相连组成形状、它们拥有一样的颜色、轮廓发如今图像的对象分析、对象检测等方面是很是有用的工具,在OpenCV中使用轮廓发现相关函数时候要求输入图像是二值图像,这样便于轮廓提取、边缘提取等操做。轮廓发现的函数与参数解释以下: ide
findContours(image, mode, method, contours=None, hierarchy=None, offset=None) - image输入/输出的二值图像 - mode 迒回轮廓的结构、能够是List、Tree、External - method 轮廓点的编码方式,基本是基于链式编码 - contours 迒回的轮廓集合 - hieracrchy 迒回的轮廓层次关系 - offset 点是否有位移
2. 多边形逼近
多边形逼近,是经过对轮廓外形无限逼近,删除非关键点、获得轮廓的关键点,不断逼近轮廓真实形状的方法,OpenCV中多边形逼近的函数与参数解释以下:函数
approxPolyDP(curve, epsilon, closed, approxCurve=None) - curve 表示输入的轮廓点集合 - epsilon 表示逼近曲率,越小表示类似逼近越厉害 - close 是否闭合
3. 几何距计算
图像几何距是图像的几何特征,高阶几何距中心化以后具备特征不变性,能够产
生Hu距输出,用于形状匹配等操做,这里咱们经过计算一阶几何距获得指定轮廓的中心位置,计算几何距的函数与参数解释以下:工具
moments(array, binaryImage=None) - array表示指定输入轮廓 - binaryImage默认为None
整个代码实现分为以下几步完成学习
#################################################### # 做者:zhigang, #################################################### import cv2 as cv import numpy as np class ShapeAnalysis: def __init__(self): self.shapes = {'triangle': 0, 'rectangle': 0, 'polygons': 0, 'circles': 0} def analysis(self, frame): h, w, ch = frame.shape result = np.zeros((h, w, ch), dtype=np.uint8) # 二值化图像 print("start to detect lines...\n") gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) cv.imshow("input image", frame) out_binary, contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) for cnt in range(len(contours)): # 提取与绘制轮廓 cv.drawContours(result, contours, cnt, (0, 255, 0), 2) # 轮廓逼近 epsilon = 0.01 * cv.arcLength(contours[cnt], True) approx = cv.approxPolyDP(contours[cnt], epsilon, True) # 分析几何形状 corners = len(approx) shape_type = "" if corners == 3: count = self.shapes['triangle'] count = count+1 self.shapes['triangle'] = count shape_type = "三角形" if corners == 4: count = self.shapes['rectangle'] count = count + 1 self.shapes['rectangle'] = count shape_type = "矩形" if corners >= 10: count = self.shapes['circles'] count = count + 1 self.shapes['circles'] = count shape_type = "圆形" if 4 < corners < 10: count = self.shapes['polygons'] count = count + 1 self.shapes['polygons'] = count shape_type = "多边形" # 求解中心位置 mm = cv.moments(contours[cnt]) cx = int(mm['m10'] / mm['m00']) cy = int(mm['m01'] / mm['m00']) cv.circle(result, (cx, cy), 3, (0, 0, 255), -1) # 颜色分析 color = frame[cy][cx] color_str = "(" + str(color[0]) + ", " + str(color[1]) + ", " + str(color[2]) + ")" # 计算面积与周长 p = cv.arcLength(contours[cnt], True) area = cv.contourArea(contours[cnt]) print("周长: %.3f, 面积: %.3f 颜色: %s 形状: %s "% (p, area, color_str, shape_type)) cv.imshow("Analysis Result", self.draw_text_info(result)) cv.imwrite("D:/test-result.png", self.draw_text_info(result)) return self.shapes def draw_text_info(self, image): c1 = self.shapes['triangle'] c2 = self.shapes['rectangle'] c3 = self.shapes['polygons'] c4 = self.shapes['circles'] cv.putText(image, "triangle: "+str(c1), (10, 20), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1) cv.putText(image, "rectangle: " + str(c2), (10, 40), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1) cv.putText(image, "polygons: " + str(c3), (10, 60), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1) cv.putText(image, "circles: " + str(c4), (10, 80), cv.FONT_HERSHEY_PLAIN, 1.2, (255, 0, 0), 1) return image if __name__ == "__main__": src = cv.imread("D:/javaopencv/gem_test.png") ld = ShapeAnalysis() ld.analysis(src) cv.waitKey(0) cv.destroyAllWindows()
原图ui
运行结果:编码
控制台输出:code
欢迎继续关注本博客,学习OpenCV Python教程