参考
1.weakref – Garbage-collectable references to objects
2.Python弱引用介绍html
和许多其它的高级语言同样,Python使用了垃圾回收器来自动销毁那些再也不使用的对象。每一个对象都有一个引用计数,当这个引用计数为0时Python可以安全地销毁这个对象。node
引用计数会记录给定对象的引用个数,并在引用个数为零时收集该对象。因为一次仅能有一个对象被回收,引用计数没法回收循环引用的对象。python
一组相互引用的对象若没有被其它对象直接引用,而且不可访问,则会永久存活下来。一个应用程序若是持续地产生这种不可访问的对象群组,就会发生内存泄漏。缓存
在对象群组内部使用弱引用(即不会在引用计数中被计数的引用)有时能避免出现引用环,所以弱引用可用于解决循环引用的问题。安全
在计算机程序设计中,弱引用,与强引用相对,是指不能确保其引用的对象不会被垃圾回收器回收的引用。一个对象若只被弱引用所引用,则可能在任什么时候刻被回收。弱引用的主要做用就是减小循环引用,减小内存中没必要要的对象存在的数量。app
使用weakref模块,你能够建立到对象的弱引用,Python在对象的引用计数为0或只存在对象的弱引用时将回收这个对象。函数
你能够经过调用weakref模块的ref(obj[,callback])来建立一个弱引用,obj是你想弱引用的对象,callback是一个可选的函数,当因没有引用致使Python要销毁这个对象时调用。回调函数callback要求单个参数(弱引用的对象)。this
一旦你有了一个对象的弱引用,你就能经过调用弱引用来获取被弱引用的对象。debug
>>>> import sys >>> import weakref >>> class Man: def __init__(self,name): print self.name = name >>> o = Man('Jim') >>> sys.getrefcount(o) 2 >>> r = weakref.ref(o) # 建立一个弱引用 >>> sys.getrefcount(o) # 引用计数并无改变 2 >>> r <weakref at 00D3B3F0; to 'instance' at 00D37A30> # 弱引用所指向的对象信息 >>> o2 = r() # 获取弱引用所指向的对象 >>> o is o2 True >>> sys.getrefcount(o) 3 >>> o = None >>> o2 = None >>> r # 当对象引用计数为零时,弱引用失效。 <weakref at 00D3B3F0; dead>de>
上面的代码中,咱们使用sys包中的getrefcount()
来查看某个对象的引用计数。须要注意的是,当使用某个引用做为参数,传递给getrefcount()
时,参数实际上建立了一个临时的引用。所以,getrefcount()所获得的结果,会比指望的多1。设计
一旦没有了对这个对象的其它的引用,调用弱引用将返回None,由于Python已经销毁了这个对象。 注意:大部分的对象不能经过弱引用来访问。
weakref模块中的getweakrefcount(obj)和getweakrefs(obj)分别返回弱引用数和关于所给对象的引用列表。
弱引用对于建立对象(这些对象很费资源)的缓存是有用的。
代理对象是弱引用对象,它们的行为就像它们所引用的对象,这就便于你没必要首先调用弱引用来访问背后的对象。经过weakref模块的proxy(obj[,callback])函数来建立代理对象。使用代理对象就如同使用对象自己同样:
import weakref class Man: def __init__(self, name): self.name = name def test(self): print "this is a test!" def callback(self): print "callback" o = Man('Jim') p = weakref.proxy(o, callback) p.test() o=None p.test()
callback参数的做用和ref函数中callback同样。在Python删除了一个引用的对象以后,使用代理将会致使一个weakref.ReferenceError错误。
前面说过,使用弱引用,能够解决循环引用不能被垃圾回收的问题。
首先咱们看下常规的循环引用,先建立一个简单的Graph类,而后建立三个Graph实例:
# -*- coding:utf-8 -*- import weakref import gc from pprint import pprint class Graph(object): def __init__(self, name): self.name = name self.other = None def set_next(self, other): print "%s.set_next(%r)" % (self.name, other) self.other = other def all_nodes(self): yield self n = self.other while n and n.name !=self.name: yield n n = n.other if n is self: yield n return def __str__(self): return "->".join(n.name for n in self.all_nodes()) def __repr__(self): return "<%s at 0x%x name=%s>" % (self.__class__.__name__, id(self), self.name) def __del__(self): print "(Deleting %s)" % self.name def collect_and_show_garbage(): print "Collecting..." n = gc.collect() print "unreachable objects:", n print "garbage:", pprint(gc.garbage) def demo(graph_factory): print "Set up graph:" one = graph_factory("one") two = graph_factory("two") three = graph_factory("three") one.set_next(two) two.set_next(three) three.set_next(one) print print "Graph:" print str(one) collect_and_show_garbage() print three = None two = None print "After 2 references removed" print str(one) collect_and_show_garbage() print print "removeing last reference" one = None collect_and_show_garbage() gc.set_debug(gc.DEBUG_LEAK) print "Setting up the cycle" print demo(Graph) print print "breaking the cycle and cleaning up garbage" print gc.garbage[0].set_next(None) while gc.garbage: del gc.garbage[0] print collect_and_show_garbage()
这里使用了python的gc库的几个方法, 解释以下:
gc.collect() 收集垃圾
gc.garbage 获取垃圾列表
gc.set_debug(gc.DBEUG_LEAK) 打印没法看到的对象信息
运行结果以下:
Setting up the cycle Set up graph: one.set_next(<Graph at 0x25c9e70 name=two>) two.set_next(<Graph at 0x25c9e90 name=three>) three.set_next(<Graph at 0x25c9e50 name=one>) Graph: one->two->three->one Collecting... unreachable objects:g 0 garbage:[] After 2 references removed one->two->three->one Collecting... unreachable objects: 0 garbage:[] removeing last reference Collecting... unreachable objects: 6 garbage:[<Graph at 0x25c9e50 name=one>, <Graph at 0x25c9e70 name=two>, <Graph at 0x25c9e90 name=three>, {'name': 'one', 'other': <Graph at 0x25c9e70 name=two>}, {'name': 'two', 'other': <Graph at 0x25c9e90 name=three>}, {'name': 'three', 'other': <Graph at 0x25c9e50 name=one>}] breaking the cycle and cleaning up garbage one.set_next(None) (Deleting two) (Deleting three) (Deleting one) Collecting... unreachable objects: 0 garbage:[] None [Finished in 0.4s]c: uncollectable <Graph 025C9E50> gc: uncollectable <Graph 025C9E70> gc: uncollectable <Graph 025C9E90> gc: uncollectable <dict 025D3030> gc: uncollectable <dict 025D30C0> gc: uncollectable <dict 025C1F60>
从结果中咱们能够看出,即便咱们删除了Graph实例的本地引用,它依然存在垃圾列表中,不能回收。
接下来建立使弱引用的WeakGraph类:
class WeakGraph(Graph): def set_next(self, other): if other is not None: if self in other.all_nodes(): other = weakref.proxy(other) super(WeakGraph, self).set_next(other) return demo(WeakGraph)
结果以下:
Setting up the cycle Set up graph: one.set_next(<WeakGraph at 0x23f9ef0 name=two>) two.set_next(<WeakGraph at 0x23f9f10 name=three>) three.set_next(<weakproxy at 023F8810 to WeakGraph at 023F9ED0>) Graph: one->two->three Collecting... unreachable objects:Traceback (most recent call last): File "D:\apps\platform\demo\demo.py", line 87, in <module> gc.garbage[0].set_next(None) IndexError: list index out of range 0 garbage:[] After 2 references removed one->two->three Collecting... unreachable objects: 0 garbage:[] removeing last reference (Deleting one) (Deleting two) (Deleting three) Collecting... unreachable objects: 0 garbage:[] breaking the cycle and cleaning up garbage [Finished in 0.4s with exit code 1]
上面的类中,使用代理来指示已看到的对象,随着demo()删除了对象的全部本地引用,循环会断开,这样垃圾回收期就能够将这些对象删除。
所以咱们咱们在实际工做中若是须要用到循环引用的话,尽可能采用弱引用来实现。
ref
和proxy
都只可用与维护单个对象的弱引用,若是想同时建立多个对象的弱引用咋办?这时可使用WeakKeyDictionary
和WeakValueDictionary
来实现。
WeakValueDictionary
类,顾名思义,本质上仍是个字典类型,只是它的值类型是弱引用。当这些值引用的对象再也不被其余非弱引用对象引用时,那么这些引用的对象就能够经过垃圾回收器进行回收。
下面的例子说明了常规字典与WeakValueDictionary
的区别。
# -*- coding:utf-8 -*- import weakref import gc from pprint import pprint gc.set_debug(gc.DEBUG_LEAK) class Man(object): def __init__(self, name): self.name = name def __repr__(self): return '<Man name=%s>' % self.name def __del__(self): print "deleting %s" % self def demo(cache_factory): all_refs = {} print "cache type:", cache_factory cache = cache_factory() for name in ["Jim", 'Tom', 'Green']: man = Man(name) cache[name] = man all_refs[name] = man del man print "all_refs=", pprint(all_refs) print print "before, cache contains:", cache.keys() for name, value in cache.items(): print "%s = %s" % (name, value) print "\ncleanup" del all_refs gc.collect() print print "after, cache contains:", cache.keys() for name, value in cache.items(): print "%s = %s" % (name, value) print "demo returning" return demo(dict) print demo(weakref.WeakValueDictionary)
结果以下所示:
cache type: <type 'dict'> all_refs={'Green': <Man name=Green>, 'Jim': <Man name=Jim>, 'Tom': <Man name=Tom>} before, cache contains: ['Jim', 'Green', 'Tom'] Jim = <Man name=Jim> Green = <Man name=Green> Tom = <Man name=Tom> cleanup after, cache contains: ['Jim', 'Green', 'Tom'] Jim = <Man name=Jim> Green = <Man name=Green> Tom = <Man name=Tom> demo returning deleting <Man name=Jim> deleting <Man name=Green> deleting <Man name=Tom> cache type: weakref.WeakValueDictionary all_refs={'Green': <Man name=Green>, 'Jim': <Man name=Jim>, 'Tom': <Man name=Tom>} before, cache contains: ['Jim', 'Green', 'Tom'] Jim = <Man name=Jim> Green = <Man name=Green> Tom = <Man name=Tom> cleanup deleting <Man name=Jim> deleting <Man name=Green> after, cache contains: [] demo returning [Finished in 0.3s]