Feature-based和Fine-tune的区别

  在Bert的论文中看到了Feature-based和Fine-tune这两种无监督的NLP学习方法,对这两个概念一直以来都不太理解,今天来总结下。 Feature-based Feature-based指利用语言模型的中间结果也就是LM embedding, 将其作为额外的特征,引入到原任务的模型中,例如在TagLM[1]中,采用了两个单向RNN构成的语言模型,将语言模型的中间结果。 引入到序
相关文章
相关标签/搜索