特征值分解和SVD分解

一、特征值与特征向量的几何意义 1.     矩阵乘法 在介绍特征值与特征向量的几何意义之前,先介绍矩阵乘法的几何意义。 矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度的新向量。在这个变化过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某些向量只发生伸缩变换,不产生旋转效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值。 比如:,它对应的线性变换是下面的形式形式: 因
相关文章
相关标签/搜索