吉布斯采样和梅特罗波利斯-黑斯廷斯算法

吉布斯采样 吉布斯采样(英语:Gibbs sampling)是统计学中用于马尔科夫蒙特卡洛(MCMC)的一种算法,用于在难以直接采样时从某一多变量概率分布中近似抽取样本序列。该序列可用于近似联合分布、部分变量的边缘分布或计算积分(如某一变量的期望值)。某些变量可能为已知变量,故对这些变量并不需要采样。 吉布斯采样常用于统计推断(尤其是贝叶斯推断)之中。这是一种随机化算法,与最大期望算法等统计推断中
相关文章
相关标签/搜索