In [1]:
# Import libraries
import pandas as pd import sys
print('Python version ' + sys.version) print('Pandas version: ' + pd.__version__)
# Our small data set
d = [0,1,2,3,4,5,6,7,8,9] # Create dataframe df = pd.DataFrame(d) df
#改变df 列的名字
df.columns = ['Rev']
df
# 添加一列
df['NewCol'] = 5 df
# 修改列
df['NewCol'] = df['NewCol'] + 1 df
# 删除列
del df['NewCol'] df
# 添加几列
df['test'] = 3 df['col'] = df['Rev'] df
#若是咱们想要,咱们甚至能够改变索引的名称
i = ['a','b','c','d','e','f','g','h','i','j']
df.index = i
df
如今咱们能够开始使用loc选择数据帧的各个部分。html
df.loc['a']
# df.loc[inclusive:inclusive]
df.loc['a':'d']
# df.iloc[inclusive:exclusive]
# 注意:.iloc基于严格的整数位置[版本0.11.0以上]
df.iloc[0:3]
咱们也可使用列名选择。python
df['Rev']
df[['Rev', 'test']]
# df.ix[rows,columns]
# 代替已弃用的ix函数
#df.ix[0:3,'Rev']
df.loc[df.index[0:3],'Rev']
#
代替已弃用的ix函数
#df.ix[5:,'col']
df.loc[df.index[5:],'col']
#
代替已弃用的ix函数
#df.ix[:3,['col', 'test']]
df.loc[df.index[:3],['col', 'test']]
还有一些方便的功能能够选择数据帧的顶部和底部记录。app
# Select top N number of records
df.head(5)
# Select bottom N number of records
df.tail(5)