java.util.concurrent
java
ConcurrentHashMap
是一个支持并发检索和并发更新的线程安全的HashMap(但不容许空key或value)。
JDK8以CAS+synchronized
来保证并发安全。安全
效率:多线程
ConcurrentHashMap一般优于同步的HashMap
,ConcurrentSkipListMap一般优于同步的TreeMap
CopyOnWriteArrayList优于同步的ArrayList
ConcurrentHashMap、HashMap和HashTable的区别:并发
CAS
+synchronized
来保证并发安全(在JDK 7以前是经过Lock
和Segment(分段锁)
实现并发安全),在并发访问时不须要阻塞线程,因此效率是比Hashtable 要高的。结构线程
public V put(K key, V value) { return putVal(key, value, false); } /** Implementation for put and putIfAbsent */ final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); //计算hash值 int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) {//自旋 //f:索引节点; n:tab.length; i:新节点索引 (n - 1) & hash; fh:f.hash Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) //初始化 tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//索引i节点为空,直接插入 //cas插入节点,成功则跳出循环 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } //当前节点处于移动状态-其余线程正在进行节点转移操做 else if ((fh = f.hash) == MOVED) //帮助转移 tab = helpTransfer(tab, f); else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) {//check stable //f.hash>=0,说明f是链表的头结点 if (fh >= 0) { binCount = 1;//记录链表节点数,用于后面是否转换为红黑树作判断 for (Node<K,V> e = f;; ++binCount) { K ek; //key相同 修改 if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; //到这里说明已是链表尾,把当前值做为新的节点插入到队尾 if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } //红黑树节点操做 else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { //若是链表中节点数binCount >= TREEIFY_THRESHOLD(默认是8),则把链表转化为红黑树结构 if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } //更新新元素个数 addCount(1L, binCount); return null; }
public V get(Object key) { Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
public V remove(Object key) { return replaceNode(key, null, null); } final V replaceNode(Object key, V value, Object cv) { int hash = spread(key.hashCode()); for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) break; else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; boolean validated = false; synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { validated = true; for (Node<K,V> e = f, pred = null;;) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { V ev = e.val; if (cv == null || cv == ev || (ev != null && cv.equals(ev))) { oldVal = ev; if (value != null) e.val = value; else if (pred != null) pred.next = e.next; else setTabAt(tab, i, e.next); } break; } pred = e; if ((e = e.next) == null) break; } } else if (f instanceof TreeBin) { validated = true; TreeBin<K,V> t = (TreeBin<K,V>)f; TreeNode<K,V> r, p; if ((r = t.root) != null && (p = r.findTreeNode(hash, key, null)) != null) { V pv = p.val; if (cv == null || cv == pv || (pv != null && cv.equals(pv))) { oldVal = pv; if (value != null) p.val = value; else if (t.removeTreeNode(p)) setTabAt(tab, i, untreeify(t.first)); } } } else if (f instanceof ReservationNode) throw new IllegalStateException("Recursive update"); } } if (validated) { if (oldVal != null) { if (value == null) addCount(-1L, -1); return oldVal; } break; } } } return null; }