题面c++
树形\(\text{DP}\)入门题。spa
咱们设\(dp[i][0/1]\)表示第\(i\)个节点选\(/\)不选的最大快乐指数。code
状态转移方程:
\(dp[i][0]=a[i]+\sum_{v∈son[u]}dp[v][1]\),其中\(a[i]\)为每一个员工的快乐指数。
\(dp[i][1]=\sum_{v∈son[u]}\max{(dp[v][1],dp[v][0])}\)get
答案为\(\max{(dp[rt][0],dp[rt][1])}\),其中\(rt\)为没有上司的员工。it
转移一下便可。入门
#include <bits/stdc++.h> #define itn int #define gI gi using namespace std; inline int gi() { int f = 1, x = 0; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();} while (c >= '0' && c <= '9') x = x * 10 + (c ^ 48), c = getchar(); return f * x; } const int maxn = 6003; int n, a[maxn], tot, head[maxn], ver[maxn * 2], nxt[maxn], ans, vis[maxn], rt; int dp[maxn][2];//0:xuan 1:buxuan inline void add(int u, int v) { ver[++tot] = v, nxt[tot] = head[u], head[u] = tot; } void dfs(int u, int f) { dp[u][0] = a[u]; for (int i = head[u]; i; i = nxt[i]) { int v = ver[i]; if (v == f) continue; dfs(v, u); dp[u][0] += dp[v][1]; dp[u][1] += max(dp[v][0], dp[v][1]);//状态转移 } } int main() { n = gi(); for (int i = 1; i <= n; i+=1) a[i] = gi(); for (int i = 1; i < n; i+=1) { int u = gi(), v = gi(); add(u, v); add(v, u); vis[u] = 1; } int h = gi(), o = gi(); for (int i = 1; i <= n; i+=1) if (!vis[i]) {rt = i; break;}//找到根节点,即没有上司的员工编号 dfs(rt, 0); printf("%d\n", max(dp[rt][0], dp[rt][1]));//答案就是根节点选/不选取max return 0; }
由此,咱们能够得出树形\(\text{DP}\)的状态的基本形式:class
\(dp[i][…]\)表示第\(i\)个节点的状态。总结