ReentrantReadWriteLock & ReentrantLock & Synchronized 区别

1 ReentrantReadWriteLock :(读写锁、写写锁互斥,读读锁共享,经常使用于缓存如terrocotta)缓存

2 ReentrantLock :(可轮询的、定时的、可中断 lock() unlock())结合Condition将线程放入相应阻塞队列,比较灵活  Condition notFull  = lock.newCondition();dom

3 Synchronized (单一对象锁监视器) 只能单一线程阻塞队列ide

 

一:可轮询的、定时的、可中断的锁获取操做性能

(1)可轮询this

    public void tryLock(){线程

       Lock lock = new ReentrantLock();设计

       if (lock.tryLock()) { //尝试获取锁,若是拿到用锁,拿不到转而其它操做orm

       try {对象

       // manipulate protected state索引

       } finally {

       lock.unlock();                                                        

       }

       } else {

       // perform alternative actions

       }

    }

(2)定时锁

public void tryTimeLock() throws InterruptedException{

       Lock lock = new ReentrantLock();

       if (lock.tryLock(50, TimeUnit.SECONDS)) { //若是线程50秒内未获取锁,则超时返回

           try {

              // manipulate protected state

           } finally {

              lock.unlock();

           }

       } else {

           // perform alternative actions

       }

    }

(3)可中断锁

 public void lockInterruptibly() throws InterruptedException{

       Lock lock = new ReentrantLock();

        try

            lock.lockInterruptibly(); //优先响应时间中断,而不是从新获取锁

            // manipulate protected state

            lock.unlock(); 

        } 

        catch (InterruptedException e){ 

        } 

    }

 

 

二:公平队列或非块结构锁

public class ReentrantFairLock {

    private volatile long count = 0;// 保持内存可见性,各线程立可见

    private Lock lock;

    public ReentrantFairLock() {

         // 使用非公平锁,true就是公平锁

         lock = new ReentrantLock(true);//公平锁

         //所谓公平锁就是让等待最长的线程最先得到该锁(得到锁的顺序和申请锁的顺序是一致的),性能比非公平锁性能差

          //lock = new ReentrantLock(false);//非公平锁(无参数默认)

      }

    public long getValue() {

       return count;

    }

    public void increment() {

       lock.lock(); // 保持操做原子性

       try {

           count++;

       } finally {

           lock.unlock();

       }

    }

}

 

public class ConditionBoundedBuffer{

    final Lock lock = new ReentrantLock();//实例化一个锁对象 

    final Condition notFull  = lock.newCondition(); //实例化两个condition(多路等待) 

    final Condition notEmpty = lock.newCondition();  

    final Object[] items = new Object[100];//初始化一个长度为100的队列 

    int putptr, takeptr, count; 

    public void put(Object x) throws InterruptedException { 

      lock.lock();//获取锁 

      try { 

        while (count == items.length)  //放线程队列阻塞,唤醒取线程队列

       notFull.await();//当计数器count等于队列的长度时,不能在插入,所以等待,线程阻塞在notFull队列

        items[putptr] = x; //将对象放入putptr索引处 

        if (++putptr == items.length) putptr = 0;//当索引长度等于队列长度时,将putptr置为0 缘由是,不能越界插入 

       ++count;//没放入一个对象就将计数器加1 

        notEmpty.signal();//一旦插入就唤醒取数据线程 

     } finally { 

        lock.unlock();//最后释放锁 

     } 

   } 

 

    public Object take() throws InterruptedException{ 

      lock.lock();//获取锁 

      try { 

        while (count == 0) //取线程队列阻塞,唤醒放线程队列

          notEmpty.await(); 

       Object x = items[takeptr]; //取得takeptr索引处对象 

        if (++takeptr == items.length) takeptr = 0;//当takeptr达到队列长度时,从零开始取 

       --count;//每取一个讲计数器减1 

        notFull.signal();//枚取走一个就唤醒存线程 

        return x; 

     } finally { 

        lock.unlock();//释放锁 

     } 

   }  

}

 

 

ReentrantReadWriteLock读写锁:(针对不一样操做能够提供不一样读或写锁 --读写锁、写写锁之间互斥。读读锁共享)

写锁和其它任何锁互斥,读锁能够和其它读锁共用,读写锁通常可用于缓存设计

 

1)获取读锁

2)(cachedList == null)释放读锁,获取写锁

3)填充数据

4)释放写锁前获取读锁,而后释放写锁

5)最终是释放读锁

 

 

public class ReadWriteLockTest {

public static void main(String[] args) {

final Queue3 q3 = new Queue3();

for(int i=0;i<3;i++)       

{

new Thread(){

public void run(){

while(true){    //三个线程读

q3.get();

}

}

}.start();

new Thread(){

public void run(){

while(true){

q3.put(new Random().nextInt(10000)); //三个线程写

}

}

}.start();

}

}

}

 

class Queue3{

private Object data = null;//共享数据,只能有一个线程能写该数据,但能够有多个线程同时读该数据。

ReadWriteLock rwl = new ReentrantReadWriteLock();//实现接口ReadWriteLock

public void get(){

rwl.readLock().lock(); //两个线程读锁能够同时进入该读锁临界区内,可是排斥写锁

try {

System.out.println(Thread.currentThread().getName() + " be ready to read data!");

Thread.sleep((long)(Math.random()*1000));

System.out.println(Thread.currentThread().getName() + "have read data :" + data);

} catch (InterruptedException e) {

e.printStackTrace();

}finally{

rwl.readLock().unlock();

}

}

public void put(Object data){

 

rwl.writeLock().lock(); //写锁排斥其它任何线程锁进入该写锁临界区

try {

System.out.println(Thread.currentThread().getName() + " be ready to write data!");

Thread.sleep((long)(Math.random()*1000));

this.data = data;

System.out.println(Thread.currentThread().getName() + " have write data: " + data);

} catch (InterruptedException e) {

e.printStackTrace();

}finally{

rwl.writeLock().unlock();

}

}

}

 

ReentrantLock(重入锁):

public class ReentrantlockTest {

public static void main(String[] args) {

ExecutorService excuteService = Executors.newCachedThreadPool();

final Bussiness bussiness =new Bussiness();

for(int i=0;i<3;i++){

excuteService.submit(new Runnable(){

@Override

public void run() {

bussiness.service();

}

});

}

}

}

 

class Bussiness{

int count =0;

Lock lock = new ReentrantLock();//实现接口Lock

public void service(){

lock.lock();  //上锁

try{

count++;

System.out.println("count is :"+count);

}catch(Exception e){}

finally{

lock.unlock();//解锁(出现异常防止死锁)

}

}

}

相关文章
相关标签/搜索