[抄题]:node
给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每一个窗口内的中位数。(若是数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字。)算法
对于数组 [1,2,7,8,5]
, 滑动大小 k = 3 的窗口时,返回 [2,7,7]
数组
最初,窗口的数组是这样的:数据结构
[ | 1,2,7 | ,8,5]
, 返回中位数 2
;ide
接着,窗口继续向前滑动一次。函数
[1, | 2,7,8 | ,5]
, 返回中位数 7
;this
接着,窗口继续向前滑动一次。spa
[1,2, | 7,8,5 | ]
, 返回中位数 7
;debug
[暴力解法]:rest
时间分析:
空间分析:
[思惟问题]:
[一句话思路]:
窗口移动就是加一个元素、减一个元素,用俩函数实现,因此能够放在maxheap minheap中
[输入量]:空: 正常状况:特大:特小:程序里处理到的特殊状况:异常状况(不合法不合理的输入):
[画图]:
[一刷]:
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
参数须要边分析边写,留意leetcode lintcode接口是否是不同
[复杂度]:Time complexity: O(n个数*左右treeset体积lgk) Space complexity: O(n)
[英文数据结构或算法,为何不用别的数据结构或算法]:
[关键模板化代码]:
[其余解法]:
[Follow Up]:
[LC给出的题目变变变]:
class Node implements Comparable<Node>{ int id; int val; Node (int id, int val){ this.id = id; this.val = val; } public int compareTo(Node other) { Node a = other; if (this.val == a.val) { return this.id - a.id; }else { return this.val - a.val; } } } public class Solution { /* * @param nums: A list of integers * @param k: An integer * @return: The median of the element inside the window at each moving */ public double[] medianSlidingWindow(int[] nums, int k) { //corner case int n = nums.length; double[] result = new double[n]; if (nums == null || k == 0) { return result; } TreeSet<Node> minHeap = new TreeSet<>(); TreeSet<Node> maxHeap = new TreeSet<>(); //add all nums into window, rest int half = (k + 1) / 2; int index = 0; for (int i = 0; i < k - 1; i++) { add(minHeap, maxHeap, half, new Node(i, nums[i])); } for (int i = k - 1; i < n; i++) { add(minHeap, maxHeap, half, new Node(i, nums[i])); nums[index] = minHeap.last().val; index++; remove(minHeap, maxHeap, new Node(i - k + 1, nums[i - k + 1])); } return result; } // write reference first! void add(TreeSet<Node> minHeap, TreeSet<Node> maxHeap, int size, Node node) { if (minHeap.size() < size) { minHeap.add(node); }else { maxHeap.add(node); } if (minHeap.size() == size) { //don't forget just minheap, need to ensure if (maxHeap.size() > 0 && minHeap.last().val > maxHeap.first().val) { Node b = minHeap.last(); Node s = maxHeap.first(); minHeap.remove(b); minHeap.add(s); maxHeap.remove(s); maxHeap.add(b); } } } void remove(TreeSet<Node> minHeap, TreeSet<Node> maxHeap, Node node) { if (minHeap.contains(node)) { minHeap.remove(node); }else { maxHeap.remove(node); } } }
[代码风格] :