SELECT DISTINCT <select_list> FROM <left_table> <join_type> JOIN <right_table> ON <join_condition> WHERE <where_condition> GROUP BY <group_by_list> HAVING <having_condition> ORDER BY <order_by_condition> LIMIT <limit_number>
(7) SELECT (8) DISTINCT <select_list> (1) FROM <left_table> (3) <join_type> JOIN <right_table> (2) ON <join_condition> (4) WHERE <where_condition> (5) GROUP BY <group_by_list> (6) HAVING <having_condition> (9) ORDER BY <order_by_condition> (10) LIMIT <limit_number>
\1. 新建一个测试数据库TestDB;mysql
create database TestDB;
2.建立测试表table1和table2;sql
CREATE TABLE table1 ( customer_id VARCHAR(10) NOT NULL, city VARCHAR(10) NOT NULL, PRIMARY KEY(customer_id) )ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2 ( order_id INT NOT NULL auto_increment, customer_id VARCHAR(10), PRIMARY KEY(order_id) )ENGINE=INNODB DEFAULT CHARSET=UTF8;
3.插入测试数据;数据库
INSERT INTO table1(customer_id,city) VALUES('163','hangzhou'); INSERT INTO table1(customer_id,city) VALUES('9you','shanghai'); INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou'); INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou'); INSERT INTO table2(customer_id) VALUES('163'); INSERT INTO table2(customer_id) VALUES('163'); INSERT INTO table2(customer_id) VALUES('9you'); INSERT INTO table2(customer_id) VALUES('9you'); INSERT INTO table2(customer_id) VALUES('9you'); INSERT INTO table2(customer_id) VALUES('tx'); INSERT INTO table2(customer_id) VALUES(NULL);
准备工做作完之后,table1和table2看起来应该像下面这样缓存
mysql> select * from table1; +-------------+----------+ | customer_id | city | +-------------+----------+ | 163 | hangzhou | | 9you | shanghai | | baidu | hangzhou | | tx | hangzhou | +-------------+----------+ 4 rows in set (0.00 sec) mysql> select * from table2; +----------+-------------+ | order_id | customer_id | +----------+-------------+ | 1 | 163 | | 2 | 163 | | 3 | 9you | | 4 | 9you | | 5 | 9you | | 6 | tx | | 7 | NULL | +----------+-------------+ 7 rows in set (0.00 sec)
#查询来自杭州,而且订单数少于2的客户。 SELECT a.customer_id, COUNT(b.order_id) as total_orders FROM table1 AS a LEFT JOIN table2 AS b ON a.customer_id = b.customer_id WHERE a.city = 'hangzhou' GROUP BY a.customer_id HAVING count(b.order_id) < 2 ORDER BY total_orders DESC;
在这些SQL语句的执行过程当中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我如今就来跟踪这个虚拟表的变化,获得最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。测试
执行FROM语句大数据
第一步,执行FROM语句。咱们首先须要知道最开始从哪一个表开始的,这就是FROM告诉咱们的。如今有了
关于什么是笛卡尔积,请自行Google补脑。通过FROM语句对两个表执行笛卡尔积,会获得一个虚拟表,暂且叫VT1(vitual table 1),内容以下:排序
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | 9you | shanghai | 1 | 163 | | baidu | hangzhou | 1 | 163 | | tx | hangzhou | 1 | 163 | | 163 | hangzhou | 2 | 163 | | 9you | shanghai | 2 | 163 | | baidu | hangzhou | 2 | 163 | | tx | hangzhou | 2 | 163 | | 163 | hangzhou | 3 | 9you | | 9you | shanghai | 3 | 9you | | baidu | hangzhou | 3 | 9you | | tx | hangzhou | 3 | 9you | | 163 | hangzhou | 4 | 9you | | 9you | shanghai | 4 | 9you | | baidu | hangzhou | 4 | 9you | | tx | hangzhou | 4 | 9you | | 163 | hangzhou | 5 | 9you | | 9you | shanghai | 5 | 9you | | baidu | hangzhou | 5 | 9you | | tx | hangzhou | 5 | 9you | | 163 | hangzhou | 6 | tx | | 9you | shanghai | 6 | tx | | baidu | hangzhou | 6 | tx | | tx | hangzhou | 6 | tx | | 163 | hangzhou | 7 | NULL | | 9you | shanghai | 7 | NULL | | baidu | hangzhou | 7 | NULL | | tx | hangzhou | 7 | NULL | +-------------+----------+----------+-------------+
总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操做就在VT1的基础上进行。索引
执行ON过滤内存
执行完笛卡尔积之后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,获得VT2表,内容以下:
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | 163 | hangzhou | 2 | 163 | | 9you | shanghai | 3 | 9you | | 9you | shanghai | 4 | 9you | | 9you | shanghai | 5 | 9you | | tx | hangzhou | 6 | tx | +-------------+----------+----------+-------------+
VT2就是通过ON条件筛选之后获得的有用数据,而接下来的操做将在VT2的基础上继续进行。
添加外部行
这一步只有在链接类型为OUTER JOIN时才发生,如LEFT OUTER JOIN、RIGHT OUTER JOIN和FULL OUTER JOIN。在大多数的时候,咱们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。
LEFT OUTER JOIN把左表记为保留表,获得的结果为:
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | 163 | hangzhou | 2 | 163 | | 9you | shanghai | 3 | 9you | | 9you | shanghai | 4 | 9you | | 9you | shanghai | 5 | 9you | | tx | hangzhou | 6 | tx | | baidu | hangzhou | NULL | NULL | +-------------+----------+----------+-------------+
RIGHT OUTER JOIN把右表记为保留表,获得的结果为:
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | 163 | hangzhou | 2 | 163 | | 9you | shanghai | 3 | 9you | | 9you | shanghai | 4 | 9you | | 9you | shanghai | 5 | 9you | | tx | hangzhou | 6 | tx | | NULL | NULL | 7 | NULL | +-------------+----------+----------+-------------+
FULL OUTER JOIN把左右表都做为保留表,获得的结果为:
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | 163 | hangzhou | 2 | 163 | | 9you | shanghai | 3 | 9you | | 9you | shanghai | 4 | 9you | | 9you | shanghai | 5 | 9you | | tx | hangzhou | 6 | tx | | baidu | hangzhou | NULL | NULL | | NULL | NULL | 7 | NULL | +-------------+----------+----------+-------------+
添加外部行的工做就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。
因为我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了如下这条数据:
| baidu | hangzhou | NULL | NULL |
如今就把这条数据添加到VT2表中,获得的VT3表以下:
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | 163 | hangzhou | 2 | 163 | | 9you | shanghai | 3 | 9you | | 9you | shanghai | 4 | 9you | | 9you | shanghai | 5 | 9you | | tx | hangzhou | 6 | tx | | baidu | hangzhou | NULL | NULL | +-------------+----------+----------+-------------+
接下来的操做都会在该VT3表上进行。
执行WHERE过滤
对添加外部行获得的VT3进行WHERE过滤,只有符合
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | 163 | hangzhou | 2 | 163 | | tx | hangzhou | 6 | tx | | baidu | hangzhou | NULL | NULL | +-------------+----------+----------+-------------+
可是在使用WHERE子句时,须要注意如下两点:
where_condition=MIN(col)
这类对分组统计的过滤;SELECT city as c FROM t WHERE c='shanghai';
是不容许出现的。执行GROUP BY分组
GROU BY子句主要是对使用WHERE子句获得的虚拟表进行分组操做。咱们执行测试语句中的GROUP BY a.customer_id,就会获得如下内容(默认只显示组内第一条):
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | 163 | hangzhou | 1 | 163 | | baidu | hangzhou | NULL | NULL | | tx | hangzhou | 6 | tx | +-------------+----------+----------+-------------+
获得的内容会存入虚拟表VT5中,此时,咱们就获得了一个VT5虚拟表,接下来的操做都会在该表上完成。
执行HAVING过滤
HAVING子句主要和GROUP BY子句配合使用,对分组获得的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将获得如下内容:
+-------------+----------+----------+-------------+ | customer_id | city | order_id | customer_id | +-------------+----------+----------+-------------+ | baidu | hangzhou | NULL | NULL | | tx | hangzhou | 6 | tx | +-------------+----------+----------+-------------+
这就是虚拟表VT6。
SELECT列表
如今才会执行到SELECT子句,不要觉得SELECT子句被写在第一行,就是第一个被执行的。
咱们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出咱们须要的内容。咱们将获得如下内容:
+-------------+--------------+ | customer_id | total_orders | +-------------+--------------+ | baidu | 0 | | tx | 1 | +-------------+--------------+
尚未完,这只是虚拟表VT7。
执行DISTINCT子句
若是在查询中指定了DISTINCT子句,则会建立一张内存临时表(若是内存放不下,就须要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是同样的,不一样的是对进行DISTINCT操做的列增长了一个惟一索引,以此来除重复数据。
因为个人测试SQL语句中并无使用DISTINCT,因此,在该查询中,这一步不会生成一个虚拟表。
执行ORDER BY子句
对虚拟表中的内容按照指定的列进行排序,而后返回一个新的虚拟表,咱们执行测试SQL语句中的ORDER BY total_orders DESC,就会获得如下内容:
+-------------+--------------+ | customer_id | total_orders | +-------------+--------------+ | tx | 1 | | baidu | 0 | +-------------+--------------+
能够看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。
执行LIMIT子句
LIMIT子句从上一步获得的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,获得的结果一样是无序的,因此,不少时候,咱们都会看到LIMIT子句会和ORDER BY子句一块儿使用。
MySQL数据库的LIMIT支持以下形式的选择:
LIMIT n, m
表示从第n条记录开始选择m条记录。而不少开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量很是大的时候,使用LIMIT n, m是很是低效的。由于LIMIT的机制是每次都是从头开始扫描,若是须要从第60万行开始,读取3条数据,就须要先扫描定位到60万行,而后再进行读取,而扫描的过程是一个很是低效的过程。因此,对于大数据处理时,是很是有必要在应用层创建必定的缓存机制(如今的大数据处理,大都使用缓存)