MySQL的逻辑查询语句的执行顺序

一 SELECT语句关键字的定义顺序

SELECT DISTINCT <select_list>
FROM <left_table>
<join_type> JOIN <right_table>
ON <join_condition>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
ORDER BY <order_by_condition>
LIMIT <limit_number>

二 SELECT语句关键字的执行顺序

(7)     SELECT 
(8)     DISTINCT <select_list>
(1)     FROM <left_table>
(3)     <join_type> JOIN <right_table>
(2)     ON <join_condition>
(4)     WHERE <where_condition>
(5)     GROUP BY <group_by_list>
(6)     HAVING <having_condition>
(9)     ORDER BY <order_by_condition>
(10)    LIMIT <limit_number>

三 准备表和数据

\1. 新建一个测试数据库TestDB;mysql

create database TestDB;

2.建立测试表table1和table2;sql

CREATE TABLE table1
 (
     customer_id VARCHAR(10) NOT NULL,
     city VARCHAR(10) NOT NULL,
     PRIMARY KEY(customer_id)
 )ENGINE=INNODB DEFAULT CHARSET=UTF8;

 CREATE TABLE table2
 (
     order_id INT NOT NULL auto_increment,
     customer_id VARCHAR(10),
     PRIMARY KEY(order_id)
 )ENGINE=INNODB DEFAULT CHARSET=UTF8;

3.插入测试数据;数据库

INSERT INTO table1(customer_id,city) VALUES('163','hangzhou');
 INSERT INTO table1(customer_id,city) VALUES('9you','shanghai');
 INSERT INTO table1(customer_id,city) VALUES('tx','hangzhou');
 INSERT INTO table1(customer_id,city) VALUES('baidu','hangzhou');

 INSERT INTO table2(customer_id) VALUES('163');
 INSERT INTO table2(customer_id) VALUES('163');
 INSERT INTO table2(customer_id) VALUES('9you');
 INSERT INTO table2(customer_id) VALUES('9you');
 INSERT INTO table2(customer_id) VALUES('9you');
 INSERT INTO table2(customer_id) VALUES('tx');
 INSERT INTO table2(customer_id) VALUES(NULL);

准备工做作完之后,table1和table2看起来应该像下面这样缓存

mysql> select * from table1;
 +-------------+----------+
 | customer_id | city     |
 +-------------+----------+
 | 163         | hangzhou |
 | 9you        | shanghai |
 | baidu       | hangzhou |
 | tx          | hangzhou |
 +-------------+----------+
 4 rows in set (0.00 sec)

 mysql> select * from table2;
 +----------+-------------+
 | order_id | customer_id |
 +----------+-------------+
 |        1 | 163         |
 |        2 | 163         |
 |        3 | 9you        |
 |        4 | 9you        |
 |        5 | 9you        |
 |        6 | tx          |
 |        7 | NULL        |
 +----------+-------------+
 7 rows in set (0.00 sec)

四 准备SQL逻辑查询测试语句

#查询来自杭州,而且订单数少于2的客户。
 SELECT a.customer_id, COUNT(b.order_id) as total_orders
 FROM table1 AS a
 LEFT JOIN table2 AS b
 ON a.customer_id = b.customer_id
 WHERE a.city = 'hangzhou'
 GROUP BY a.customer_id
 HAVING count(b.order_id) < 2
 ORDER BY total_orders DESC;

五 执行顺序分析

在这些SQL语句的执行过程当中,都会产生一个虚拟表,用来保存SQL语句的执行结果(这是重点),我如今就来跟踪这个虚拟表的变化,获得最终的查询结果的过程,来分析整个SQL逻辑查询的执行顺序和过程。测试

执行FROM语句大数据

第一步,执行FROM语句。咱们首先须要知道最开始从哪一个表开始的,这就是FROM告诉咱们的。如今有了 两个表,咱们到底从哪一个表开始,仍是从两个表进行某种联系之后再开始呢?它们之间如何产生联系呢?——笛卡尔积 code

关于什么是笛卡尔积,请自行Google补脑。通过FROM语句对两个表执行笛卡尔积,会获得一个虚拟表,暂且叫VT1(vitual table 1),内容以下:排序

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 9you        | shanghai |        1 | 163         |
| baidu       | hangzhou |        1 | 163         |
| tx          | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        2 | 163         |
| baidu       | hangzhou |        2 | 163         |
| tx          | hangzhou |        2 | 163         |
| 163         | hangzhou |        3 | 9you        |
| 9you        | shanghai |        3 | 9you        |
| baidu       | hangzhou |        3 | 9you        |
| tx          | hangzhou |        3 | 9you        |
| 163         | hangzhou |        4 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| baidu       | hangzhou |        4 | 9you        |
| tx          | hangzhou |        4 | 9you        |
| 163         | hangzhou |        5 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| baidu       | hangzhou |        5 | 9you        |
| tx          | hangzhou |        5 | 9you        |
| 163         | hangzhou |        6 | tx          |
| 9you        | shanghai |        6 | tx          |
| baidu       | hangzhou |        6 | tx          |
| tx          | hangzhou |        6 | tx          |
| 163         | hangzhou |        7 | NULL        |
| 9you        | shanghai |        7 | NULL        |
| baidu       | hangzhou |        7 | NULL        |
| tx          | hangzhou |        7 | NULL        |
+-------------+----------+----------+-------------+

总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操做就在VT1的基础上进行。索引

执行ON过滤内存

执行完笛卡尔积之后,接着就进行ON a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,获得VT2表,内容以下:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+

VT2就是通过ON条件筛选之后获得的有用数据,而接下来的操做将在VT2的基础上继续进行。

添加外部行

这一步只有在链接类型为OUTER JOIN时才发生,如LEFT OUTER JOIN、RIGHT OUTER JOIN和FULL OUTER JOIN。在大多数的时候,咱们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

LEFT OUTER JOIN把左表记为保留表,获得的结果为:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+

RIGHT OUTER JOIN把右表记为保留表,获得的结果为:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| NULL        | NULL     |        7 | NULL        |
+-------------+----------+----------+-------------+

FULL OUTER JOIN把左右表都做为保留表,获得的结果为:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
| NULL        | NULL     |        7 | NULL        |
+-------------+----------+----------+-------------+

添加外部行的工做就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

因为我在准备的测试SQL查询逻辑语句中使用的是LEFT JOIN,过滤掉了如下这条数据:

| baidu       | hangzhou |     NULL | NULL        |

如今就把这条数据添加到VT2表中,获得的VT3表以下:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+

接下来的操做都会在该VT3表上进行。

执行WHERE过滤

对添加外部行获得的VT3进行WHERE过滤,只有符合 的记录才会输出到虚拟表VT4中。当咱们执行WHERE a.city = 'hangzhou'的时候,就会获得如下内容,并存在虚拟表VT4中:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+

可是在使用WHERE子句时,须要注意如下两点:

  1. 因为数据尚未分组,所以如今还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤;
  2. 因为尚未进行列的选取操做,所以在SELECT中使用列的别名也是不被容许的,如:SELECT city as c FROM t WHERE c='shanghai';是不容许出现的。

执行GROUP BY分组

GROU BY子句主要是对使用WHERE子句获得的虚拟表进行分组操做。咱们执行测试语句中的GROUP BY a.customer_id,就会获得如下内容(默认只显示组内第一条):

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| baidu       | hangzhou |     NULL | NULL        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+

获得的内容会存入虚拟表VT5中,此时,咱们就获得了一个VT5虚拟表,接下来的操做都会在该表上完成。

执行HAVING过滤

HAVING子句主要和GROUP BY子句配合使用,对分组获得的VT5虚拟表进行条件过滤。当我执行测试语句中的HAVING count(b.order_id) < 2时,将获得如下内容:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| baidu       | hangzhou |     NULL | NULL        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+

这就是虚拟表VT6。

SELECT列表

如今才会执行到SELECT子句,不要觉得SELECT子句被写在第一行,就是第一个被执行的。

咱们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出咱们须要的内容。咱们将获得如下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| baidu       |            0 |
| tx          |            1 |
+-------------+--------------+

尚未完,这只是虚拟表VT7。

执行DISTINCT子句

若是在查询中指定了DISTINCT子句,则会建立一张内存临时表(若是内存放不下,就须要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是同样的,不一样的是对进行DISTINCT操做的列增长了一个惟一索引,以此来除重复数据。

因为个人测试SQL语句中并无使用DISTINCT,因此,在该查询中,这一步不会生成一个虚拟表。

执行ORDER BY子句

对虚拟表中的内容按照指定的列进行排序,而后返回一个新的虚拟表,咱们执行测试SQL语句中的ORDER BY total_orders DESC,就会获得如下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| tx          |            1 |
| baidu       |            0 |
+-------------+--------------+

能够看到这是对total_orders列进行降序排列的。上述结果会存储在VT8中。

执行LIMIT子句

LIMIT子句从上一步获得的VT8虚拟表中选出从指定位置开始的指定行数据。对于没有应用ORDER BY的LIMIT子句,获得的结果一样是无序的,因此,不少时候,咱们都会看到LIMIT子句会和ORDER BY子句一块儿使用。

MySQL数据库的LIMIT支持以下形式的选择:

LIMIT n, m

表示从第n条记录开始选择m条记录。而不少开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量很是大的时候,使用LIMIT n, m是很是低效的。由于LIMIT的机制是每次都是从头开始扫描,若是须要从第60万行开始,读取3条数据,就须要先扫描定位到60万行,而后再进行读取,而扫描的过程是一个很是低效的过程。因此,对于大数据处理时,是很是有必要在应用层创建必定的缓存机制(如今的大数据处理,大都使用缓存)

相关文章
相关标签/搜索