奇异值分解简介:从原理到基础机器学习应用

矩阵分解在机器学习应用中的重要性无需多言。本文对适用范围很广的奇异值分解方法进行了介绍,并通过代码演示说明了其工作方式、计算方法及其常见的几种基础应用。 矩阵分解也叫矩阵因子分解,涉及到用给定矩阵的组成元素描述该矩阵。 奇异值分解(SVD)可能是最著名和使用最广泛的矩阵分解方法。所有矩阵都有一种 SVD 方法,这使得其比特征分解(eigendecomposition)等其它方法更加稳定。因此,这种
相关文章
相关标签/搜索