基于docker安装tensorflow

最近在自学机器学习,大热的Tensorflow天然不能错过,因此首先解决安装问题,为了避免影响本地环境,因此本文基于Docker来安装Tensorflow,个人环境是Ubuntu16.04。linux

安装Docker

Docker分为CE和EE,这里咱们选择CE,也就是常规的社区版,首先移除本机上可能存在的旧版本。docker

移除旧版本

$ sudo apt-get remove docker \
               docker-engine \
               docker.io
复制代码

安装可选内核模块

从Ubuntu14.04之后,某些裁剪后的系统会把一部份内核模块移到可选内核包中,常以linux-image-extra-*开头,而Docker推荐的存储层驱动AUFS包含在可选内核模块包中,因此仍是建议安装可选内核模块包的。能够使用如下命令安装:ubuntu

$ sudo apt-get update

$ sudo apt-get install \
    linux-image-extra-$(uname -r) \
    linux-image-extra-virtual
复制代码

证书及密钥准备

在正式安装以前,咱们须要添加证书以及HTTPS传输的软件包以保证软件下载过程当中不被篡改:vim

$ sudo apt-get update

$ sudo apt-get install \
    apt-transport-https \
    ca-certificates \
    curl \
    software-properties-common
复制代码

添加软件源的GPG密钥:浏览器

$ curl -fsSL https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu/gpg | sudo apt-key add -


# 官方源
# $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
复制代码

最后添加Docker软件源:bash

$ sudo add-apt-repository \
    "deb [arch=amd64] https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu \ $(lsb_release -cs) \ stable"


# 官方源
# $ sudo add-apt-repository \
# "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
# $(lsb_release -cs) \
# stable"

复制代码

安装Docker

$ sudo apt-get update

$ sudo apt-get install docker-ce
复制代码

创建docker用户组

docker一般会使用Unix socket和Docker引擎通信,一般只有root和docker用户组的用户才能够访问该socket,否则你就要一直sudo,因此最好把你当前须要使用docker的用户添加到docker用户组中。cookie

创建docker用户组app

$ sudo groupadd docker
复制代码

将当前用户加入用户组curl

$ sudo usermod -aG docker $USER
复制代码

最后从新登陆下系统机器学习

测试Docker

确保服务启动

$ sudo service docker start
复制代码

使用HelloWorld测试

测试安装是否成功
docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
ca4f61b1923c: Pull complete 
Digest: sha256:083de497cff944f969d8499ab94f07134c50bcf5e6b9559b27182d3fa80ce3f7
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
    (amd64)
 3. The Docker daemon created a new container from that image which runs the
    executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
    to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://cloud.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/engine/userguide/
复制代码

若能显示,证实安装成功。

安装Tensorflow

有了Docker,安装Tensorflow基本没有什么难度。

下载镜像

docker pull tensorflow/tensorflow
复制代码

下载完毕后显示:

Status: Downloaded newer image for tensorflow/tensorflow:latest
复制代码

建立Tensorflow容器

docker run --name my-tensorflow -it -p 8888:8888 -v ~/tensorflow:/test/data tensorflow/tensorflow
复制代码
  • --name:建立的容器名,即my-tensorflow
  • -it:保留命令行运行
  • p 8888:8888:将本地的8888端口和http://localhost:8888/映射
  • -v ~/tensorflow:/test/data:将本地的~/tensorflow挂载到容器内的/test/data下
  • tensorflow/tensorflow :默认是tensorflow/tensorflow:latest,指定使用的镜像

输入以上命令后,默认容器就被启动了,命令行显示:

[I 15:08:31.949 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret
[W 15:08:31.970 NotebookApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
[I 15:08:31.975 NotebookApp] Serving notebooks from local directory: /notebooks
[I 15:08:31.975 NotebookApp] 0 active kernels
[I 15:08:31.975 NotebookApp] The Jupyter Notebook is running at:
[I 15:08:31.975 NotebookApp] http://[all ip addresses on your system]:8888/?token=649d7cab1734e01db75b6c2b476ea87aa0b24dde56662a27
[I 15:08:31.975 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 15:08:31.975 NotebookApp] 
    
    Copy/paste this URL into your browser when you connect for the first time,
    to login with a token:
        ;
[I 15:09:08.581 NotebookApp] 302 GET /?token=649d7cab1734e01db75b6c2b476ea87aa0b24dde56662a27 (172.17.0.1) 0.42ms
复制代码

拷贝带token的URL在浏览器打开

http://[all ip addresses on your system]:8888/?token=649d7cab1734e01db75b6c2b476ea87aa0b24dde56662a27
复制代码

显示以下:

显示Jupyter Notebook,Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本。示例中已经显示了Tensorflow的入门教程,点开一个能够看见

如上面这个例子,是使用tensorflow来使两个array相加,咱们点击run,就能够看到运行的结果了。

关闭容器

docker stop my-tensortflow
复制代码

再次打开

docker start my-tensortflow
复制代码

若是不喜欢用Jupyter Notebook,咱们也能够建立基于命令行的容器

基于命令行的容器

docker run -it --name bash_tensorflow tensorflow/tensorflow /bin/bash
复制代码

这样咱们就建立了名为bash_tensorflow的容器

仍是用start命令启动容器:

docker start bash_tensorflow
复制代码

再链接上容器:

docker attach bash_tensorflow
复制代码

能够看到咱们用终端链接上了容器,和操做Linux同样了。

这个镜像默认没有装vim,因此本身又下载了vim来写代码。

至此,安装过程结束。

相关文章
相关标签/搜索