二分搜索的扩展算法
给定两个大小为m和n的有序数组num1和num2.请你找出这两个数组的中位数,而且要求算法的时间复杂度为O(log(m+n)).你能够假设num1和num2不会同时为空。示例:数组
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
复制代码
先像归并排序同样将两数组 merge 为一个有序数组,直接取中位数便可:bash
private double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length;
int n = B.length;
if (m > n) { // 确保m<=n
int[] temp = A;
A = B;
B = temp;
int tmp = m;
m = n;
n = tmp;
}
int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
while (iMin <= iMax) {
int i = (iMin + iMax) / 2;
int j = halfLen - i;
if (i < iMax && B[j - 1] > A[i]) {
iMin = i + 1; // i is too small
} else if (i > iMin && A[i - 1] > B[j]) {
iMax = i - 1; // i is too big
} else { // i is perfect
int maxLeft = 0;
if (i == 0) {
maxLeft = B[j - 1];
} else if (j == 0) {
maxLeft = A[i - 1];
} else {
maxLeft = Math.max(A[i - 1], B[j - 1]);
}
int minRight = 0;
if (i == m) {
minRight = B[j];
} else if (j == n) {
minRight = A[i];
} else {
minRight = Math.min(B[j], A[i]);
}
return (maxLeft + minRight) / 2.0;
}
}
return 0.0;
}
复制代码