【算法刷题】2:寻找两个有序数组的中位数

二分搜索的扩展算法

题目描述

给定两个大小为m和n的有序数组num1和num2.请你找出这两个数组的中位数,而且要求算法的时间复杂度为O(log(m+n)).你能够假设num1和num2不会同时为空。示例:数组

nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0

nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
复制代码

思路与实现

合并后取中位数

先像归并排序同样将两数组 merge 为一个有序数组,直接取中位数便可:bash

private double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        if (m > n) { // 确保m<=n
            int[] temp = A;
            A = B;
            B = temp;
            int tmp = m;
            m = n;
            n = tmp;
        }
        int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = halfLen - i;
            if (i < iMax && B[j - 1] > A[i]) {
                iMin = i + 1; // i is too small
            } else if (i > iMin && A[i - 1] > B[j]) {
                iMax = i - 1; // i is too big
            } else { // i is perfect
                int maxLeft = 0;
                if (i == 0) {
                    maxLeft = B[j - 1];
                } else if (j == 0) {
                    maxLeft = A[i - 1];
                } else {
                    maxLeft = Math.max(A[i - 1], B[j - 1]);
                }

                int minRight = 0;
                if (i == m) {
                    minRight = B[j];
                } else if (j == n) {
                    minRight = A[i];
                } else {
                    minRight = Math.min(B[j], A[i]);
                }

                return (maxLeft + minRight) / 2.0;
            }
        }
        return 0.0;
    }
复制代码
相关文章
相关标签/搜索