二分类任务的一种简单且可解释的性能指标!

理论物理学家和研究科学家Mehmet Suzen曾表示,二分类任务是机器学习的基础。但是,其性能的标准统计信息是一种数学工具,ROC-AUC很难解释。在这里,引入了一种性能度量,该度量仅考虑进行正确的二进制分类的可能性。 机器学习模型的核心应用是二分类任务。从用于诊断测试的医学领域到为消费者提供信用风险决策的领域,有很多领域。建立分类器的技术多种多样,从简单的决策树到逻辑回归,再到最近利用多层神经
相关文章
相关标签/搜索