python中None和NaN比较

在pandas中, 如果其他的数据都是数值类型, pandas会把None自动替换成NaN, 甚至能将s[s.isnull()]= None,和s.replace(NaN, None)操作的效果无效化。 这时需要用where函数才能进行替换。 None能够直接被导入数据库作为空值处理, 包含NaN的数据导入时会报错。 numpy和pandas的很多函数能处理NaN,但是如果遇到None就会报错。
相关文章
相关标签/搜索