在GO语言的标准库中,提供了一个container包,这个包中提供了三种数据类型,就是heap,list和ring,本节要讲的是list的使用以及源码剖析。
要使用GO提供的list链表,则首先须要导入list包,以下所示:app
package main import( "container/list" )
导入包以后,须要了解list中定义了两种数据类型,Element和List,定义以下:this
// Element is an element of a linked list. type Element struct { // Next and previous pointers in the doubly-linked list of elements. // To simplify the implementation, internally a list l is implemented // as a ring, such that &l.root is both the next element of the last // list element (l.Back()) and the previous element of the first list // element (l.Front()). next, prev *Element // The list to which this element belongs. list *List // The value stored with this element. Value interface{} } type List struct { root Element // sentinel list element, only &root, root.prev, and root.next are used len int // current list length excluding (this) sentinel element }
Element里面定义了两个Element类型的指针next, prev以及List类型的指针list, Value用来存储值,List里面定义了一个Element做为链表的Root,len做为链表的长度。指针
import以后,就能够使用链表了:code
func main() { list_test:=list.New() // 建立list对象 list_test.PushBack("123") // 往List队列尾部插入数据 list_test.PushBack("456") list_test.PushBack("789") fmt.Println(list_test.Len()) // 输出list长度 fmt.Println(list_test.Front()) // 输出list第一个元素 fmt.Println(list_test.Front().Next()) // 输出list第一个元素的下一个元素 fmt.Println(list_test.Front().Next().Next()) // 输出list第三个元素 }
list提供的方法以下:对象
type Element func (e *Element) Next() *Element func (e *Element) Prev() *Element type List func New() *List func (l *List) Back() *Element // 返回最后一个元素 func (l *List) Front() *Element // 返回第一个元素 func (l *List) Init() *List // 链表初始化 func (l *List) InsertAfter(v interface{}, mark *Element) *Element // 在某个元素前插入 func (l *List) InsertBefore(v interface{}, mark *Element) *Element // 在某个元素后插入 func (l *List) Len() int // 返回链表长度 func (l *List) MoveAfter(e, mark *Element) // 把e元素移动到mark以后 func (l *List) MoveBefore(e, mark *Element) // 把e元素移动到mark以前 func (l *List) MoveToBack(e *Element) // 把e元素移动到队列最后 func (l *List) MoveToFront(e *Element) // 把e元素移动到队列最头部 func (l *List) PushBack(v interface{}) *Element // 在队列最后插入元素 func (l *List) PushBackList(other *List) // 在队列最后插入接上新队列 func (l *List) PushFront(v interface{}) *Element // 在队列头部插入元素 func (l *List) PushFrontList(other *List) // 在队列头部插入接上新队列 func (l *List) Remove(e *Element) interface{} // 删除某个元素
首先,使用list.New()方法,返回的是一个List对象的指针,源码func New() *List { return new(List).Init() }
并执行了List对象的Init()方法对list进行初始化,初始化root的prev和next指针以及list的长度。
以后调用list_test.PushBack("123")在队列尾部插入元素123,源码以下:队列
func (l *List) PushBack(v interface{}) *Element { l.lazyInit() return l.insertValue(v, l.root.prev) }
调用lazyInit(),若是链表没有初始化,则先初始化一遍,以后,调用list的insertValue方法,insertValue方法初始化节点以后,调用insert方法进行插入链表。element
func (l *List) insertValue(v interface{}, at *Element) *Element { return l.insert(&Element{Value: v}, at) }
整篇文章最精髓的地方就在insert方法中了,源码以下:rem
func (l *List) insert(e, at *Element) *Element { n := at.next // 用中间变量n保存at节点的next指针 at.next = e // at节点的next指向要插入的节点 e.prev = at // 要插入的节点e的prev指向at节点 e.next = n // e的next节点指向中间变量n保存的指针 n.prev = e // at节点的下一个节点的prev指向e节点 e.list = l // e节点的list指向链表的root节点 l.len++ // 链表的长度加一 return e // 返回刚插入节点的指针 }
这里的链表结构是双向链表,而且在root节点的prev指针指向了链表的结尾,链表结尾的next指针也指向了root节点,这样,其实造成了一个环形结构,若是是向链表的尾部插入新数据,则将root.prev传递给insert方法的at参数,若是是向头部插入,则将root传递给insert方法的at参数。源码
这样作的好处是显而易见的,那就是从链表的尾部插入数据,将不须要遍历一遍链表,而只须要将root节点的prev传递给insert方法中就能够了,大大节省了从尾部插入节点的时间。这段代码我看了好久,以为这个包中最精髓的地方也就在这了,这也是这篇文章诞生的缘由。it
源码以下:
// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package list implements a doubly linked list. // // To iterate over a list (where l is a *List): // for e := l.Front(); e != nil; e = e.Next() { // // do something with e.Value // } // package list // Element is an element of a linked list. type Element struct { // Next and previous pointers in the doubly-linked list of elements. // To simplify the implementation, internally a list l is implemented // as a ring, such that &l.root is both the next element of the last // list element (l.Back()) and the previous element of the first list // element (l.Front()). next, prev *Element // The list to which this element belongs. list *List // The value stored with this element. Value interface{} } // Next returns the next list element or nil. func (e *Element) Next() *Element { if p := e.next; e.list != nil && p != &e.list.root { return p } return nil } // Prev returns the previous list element or nil. func (e *Element) Prev() *Element { if p := e.prev; e.list != nil && p != &e.list.root { return p } return nil } // List represents a doubly linked list. // The zero value for List is an empty list ready to use. type List struct { root Element // sentinel list element, only &root, root.prev, and root.next are used len int // current list length excluding (this) sentinel element } // Init initializes or clears list l. func (l *List) Init() *List { l.root.next = &l.root l.root.prev = &l.root l.len = 0 return l } // New returns an initialized list. func New() *List { return new(List).Init() } // Len returns the number of elements of list l. // The complexity is O(1). func (l *List) Len() int { return l.len } // Front returns the first element of list l or nil. func (l *List) Front() *Element { if l.len == 0 { return nil } return l.root.next } // Back returns the last element of list l or nil. func (l *List) Back() *Element { if l.len == 0 { return nil } return l.root.prev } // lazyInit lazily initializes a zero List value. func (l *List) lazyInit() { if l.root.next == nil { l.Init() } } // insert inserts e after at, increments l.len, and returns e. func (l *List) insert(e, at *Element) *Element { n := at.next at.next = e e.prev = at e.next = n n.prev = e e.list = l l.len++ return e } // insertValue is a convenience wrapper for insert(&Element{Value: v}, at). func (l *List) insertValue(v interface{}, at *Element) *Element { return l.insert(&Element{Value: v}, at) } // remove removes e from its list, decrements l.len, and returns e. func (l *List) remove(e *Element) *Element { e.prev.next = e.next e.next.prev = e.prev e.next = nil // avoid memory leaks e.prev = nil // avoid memory leaks e.list = nil l.len-- return e } // Remove removes e from l if e is an element of list l. // It returns the element value e.Value. func (l *List) Remove(e *Element) interface{} { if e.list == l { // if e.list == l, l must have been initialized when e was inserted // in l or l == nil (e is a zero Element) and l.remove will crash l.remove(e) } return e.Value } // PushFront inserts a new element e with value v at the front of list l and returns e. func (l *List) PushFront(v interface{}) *Element { l.lazyInit() return l.insertValue(v, &l.root) } // PushBack inserts a new element e with value v at the back of list l and returns e. func (l *List) PushBack(v interface{}) *Element { l.lazyInit() return l.insertValue(v, l.root.prev) } // InsertBefore inserts a new element e with value v immediately before mark and returns e. // If mark is not an element of l, the list is not modified. func (l *List) InsertBefore(v interface{}, mark *Element) *Element { if mark.list != l { return nil } // see comment in List.Remove about initialization of l return l.insertValue(v, mark.prev) } // InsertAfter inserts a new element e with value v immediately after mark and returns e. // If mark is not an element of l, the list is not modified. func (l *List) InsertAfter(v interface{}, mark *Element) *Element { if mark.list != l { return nil } // see comment in List.Remove about initialization of l return l.insertValue(v, mark) } // MoveToFront moves element e to the front of list l. // If e is not an element of l, the list is not modified. func (l *List) MoveToFront(e *Element) { if e.list != l || l.root.next == e { return } // see comment in List.Remove about initialization of l l.insert(l.remove(e), &l.root) } // MoveToBack moves element e to the back of list l. // If e is not an element of l, the list is not modified. func (l *List) MoveToBack(e *Element) { if e.list != l || l.root.prev == e { return } // see comment in List.Remove about initialization of l l.insert(l.remove(e), l.root.prev) } // MoveBefore moves element e to its new position before mark. // If e or mark is not an element of l, or e == mark, the list is not modified. func (l *List) MoveBefore(e, mark *Element) { if e.list != l || e == mark || mark.list != l { return } l.insert(l.remove(e), mark.prev) } // MoveAfter moves element e to its new position after mark. // If e or mark is not an element of l, or e == mark, the list is not modified. func (l *List) MoveAfter(e, mark *Element) { if e.list != l || e == mark || mark.list != l { return } l.insert(l.remove(e), mark) } // PushBackList inserts a copy of an other list at the back of list l. // The lists l and other may be the same. func (l *List) PushBackList(other *List) { l.lazyInit() for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() { l.insertValue(e.Value, l.root.prev) } } // PushFrontList inserts a copy of an other list at the front of list l. // The lists l and other may be the same. func (l *List) PushFrontList(other *List) { l.lazyInit() for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() { l.insertValue(e.Value, &l.root) } }