JavaShuo
栏目
标签
Structural Design of Convolutional Neural Networks for Steganalysis
时间 2020-12-30
标签
try
繁體版
原文
原文链接
论文摘要 研究表明,卷积神经网络可能不适合于图像隐写分析。Xunet考虑了传统隐写分析的领域知识设计了 一种新的卷积神经网络的结构,在网络中采用第一层卷积中所产生的特征值的绝对值,来方便与改进后续层的统计建模(什么意思不太懂)。在网络的前几层使用TanH激活函数,后几层采用 1 × 1 1\times1 1×1的卷积核来防止过拟合。 其具体的网络结构如下图所示: 对网络的多个层的功能进行具体的解释
>>阅读原文<<
相关文章
1.
Structural Design of Convolutional Neural Networks for Steganalysis 阅读笔记
2.
Bag of Tricks for Convolutional Neural Networks
3.
Convolutional Neural Networks---Foundations of Convolutional Neural Networks
4.
Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts
5.
Bag of Tricks for Image Classification with Convolutional Neural Networks
6.
Understanding Convolutional Neural Networks for NLP
7.
[转] Understanding Convolutional Neural Networks for NLP
8.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
9.
014 Foundation of Convolutional Neural Networks
10.
CS231n Convolutional Neural Networks for Visual Recognition
更多相关文章...
•
Scala for循环
-
Scala教程
•
Swift for 循环
-
Swift 教程
•
使用Rxjava计算圆周率
•
算法总结-归并排序
相关标签/搜索
for...of
for..of
networks
steganalysis
structural
convolutional
neural
design
design+ijkplayer
webgame+design
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0备份还原
2.
openstack
3.
深入探讨OSPF环路问题
4.
代码仓库-分支策略
5.
Admin-Framework(八)系统授权介绍
6.
Sketch教程|如何访问组件视图?
7.
问问自己,你真的会用防抖和节流么????
8.
[图]微软Office Access应用终于启用全新图标 Publisher已在路上
9.
微软准备淘汰 SHA-1
10.
微软准备淘汰 SHA-1
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Structural Design of Convolutional Neural Networks for Steganalysis 阅读笔记
2.
Bag of Tricks for Convolutional Neural Networks
3.
Convolutional Neural Networks---Foundations of Convolutional Neural Networks
4.
Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts
5.
Bag of Tricks for Image Classification with Convolutional Neural Networks
6.
Understanding Convolutional Neural Networks for NLP
7.
[转] Understanding Convolutional Neural Networks for NLP
8.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
9.
014 Foundation of Convolutional Neural Networks
10.
CS231n Convolutional Neural Networks for Visual Recognition
>>更多相关文章<<