伯克利提出DeepMimic:使用强化学习练就18般武艺

选自BAIR Blog 作者:Xue Bin (Jason) Peng 机器之心编译 运动控制问题已经成为强化学习的标准基准,深度强化学习方法被证明适用于包括操纵和移动的多种任务。但是,使用深度强化学习训练的智能体通常行为不太自然,会出现抖动、步伐不对称、四肢动作过多等现象。而最近 BAIR 实验室将模仿真实动作片段与强化学习结合,令智能体能从参考动作片段中学习流畅和高难度的动作。 我们从计算机绘
相关文章
相关标签/搜索