2013-04-16
Linux内核介绍
Linux内核是一个用C语言写成的,符合POSIX标准的类Unix操做系统。内核是操做系统中最基本的一部分,提供了众多应用程序访问计算机硬件的机制。Linux内核的一大特色就是采用了总体式结构,有不少过程组成,每一个过程均可以独立编译,其模块机制又湿得内核保持独立而又易于扩充。Linux发行版实在Linux内核的基础之上,与外带的应用软件和工具打包配置以后发行的版本。最初的Linux内核在1991年由当时还在芬兰赫尔辛基大学计算机系读书的Linus Torvalds开发,以后Linus很快汇集了大量来自其余自由软件项目的开发者和用户为Linux内核贡献代码。当前估计有上千开发者在为Linux内核贡献代码。
自2.6.0版本发布后,Linux内核以A.B.C.D的方式命名。A和B的变化能够说可有可无,C是内核的真实版本,每个版本的变化都会带来新的特性。例如内部API的变化等等,改动的数量经常上万。D是安全补丁和bug修复。若是你是Linux的初学者或用户,只需了解stable便可,它表明稳定版的内核更新。mainline指当前的官方内核,由Linus Torvalds进行更新维护,由开发者们贡献的代码主要是合并到mainline当中。linux-next和snapshot都是代码提交周期结束以前生成的快照,用于给Linux代码贡献者们作测试使用。目前stable版本的更新周期为六到十周,下一个稳定版本的rc基本上每周都会更新。新版本的内核分两种,一种是Full Source版本,完整的内核版本。比较大,通常是tar.gz或者.bz2文件。另外一种是patch文件,即补丁文件。patch文件通常只有及时K到几百K,可是对于特定的版原本说,你要找到本身对应的版本才能使用。
编译安装内核
下载并解压内核
内核下载官网:https://www.kernel.org/
解压内核:tar xf linux-2.6.XX.tar.xz
定制内核:make menuconfig
参见makefile menuconfig过程讲解
编译内核和模块:make
生成内核模块和vmlinuz,initrd.img,Symtem.map文件
安装内核和模块:sudo make modules_install install
复制模块文件到/lib/modules目录下、复制config,vmlinuz,initrd.img,Symtem.map文件到/boot目录、更新grub
其余命令:
make mrprobe:命令的做用是在每次配置并从新编译内核前须要先执行“make mrproper”命令清理源代码树,包括过去曾经配置的内核配置文件“.config”都将被清除。即进行新的编译工做时将原来老的配置文件给删除到,以避免影响新的内核编译。
make dep:生成内核功能间的依赖关系,为编译内核作好准备。
几个重要的Linux内核文件介绍
config
使用make menuconfig 生成的内核配置文件,决定将内核的各个功能系统编译进内核仍是编译为模块仍是不编译。
vmlinuz 和 vmlinux
vmlinuz是可引导的、压缩的内核,“vm”表明“Virtual Memory”。Linux 支持虚拟内存,不像老的操做系统好比DOS有640KB内存的限制,Linux可以使用硬盘空间做为虚拟内存,所以得名“vm”。vmlinuz是可执行的Linux内核,vmlinuz的创建有两种方式:一是编译内核时经过“make zImage”建立,zImage适用于小内核的状况,它的存在是为了向后的兼容性;二是内核编译时经过命令make bzImage建立,bzImage是压缩的内核映像,须要注意,bzImage不是用bzip2压缩的,bzImage中的bz容易引发误解,bz表示“big zImage”,bzImage中的b是“big”意思。 zImage(vmlinuz)和bzImage(vmlinuz)都是用gzip压缩的。它们不只是一个压缩文件,并且在这两个文件的开头部份内嵌有gzip解压缩代码,因此你不能用gunzip 或 gzip –dc解包vmlinuz。 内核文件中包含一个微型的gzip用于解压缩内核并引导它。二者的不一样之处在于,老的zImage解压缩内核到低端内存(第一个640K),bzImage解压缩内核到高端内存(1M以上)。若是内核比较小,那么能够采用zImage 或bzImage之一,两种方式引导的系统运行时是相同的。大的内核采用bzImage,不能采用zImage。 vmlinux是未压缩的内核,vmlinuz是vmlinux的压缩文件。
initrd.img
initrd是“initial ramdisk”的简写。initrd通常被用来临时的引导硬件到实际内核vmlinuz可以接管并继续引导的状态。好比initrd- 2.4.7-10.img主要是用于加载ext3等文件系统及scsi设备的驱动。若是你使用的是scsi硬盘,而内核vmlinuz中并无这个 scsi硬件的驱动,那么在装入scsi模块以前,内核不能加载根文件系统,但scsi模块存储在根文件系统的/lib/modules下。为了解决这个问题,能够引导一个可以读实际内核的initrd内核并用initrd修正scsi引导问题,initrd-2.4.7-10.img是用gzip压缩的文件。initrd映象文件是使用mkinitrd建立的,mkinitrd实用程序可以建立initrd映象文件,这个命令是RedHat专有的,其它Linux发行版或许有相应的命令。这是个很方便的实用程序。具体状况请看帮助:man mkinitrd
System.map是一个特定内核的内核符号表,由“nm vmlinux”产生而且不相关的符号被滤出。
下面几行来自/usr/src/linux-2.4/Makefile:
nm vmlinux | grep -v '(compiled)|(.o$$)|( [aUw] )|(..ng$$)|(LASH[RL]DI)' | sort > System.map
在进行程序设计时,会命名一些变量名或函数名之类的符号。Linux内核是一个很复杂的代码块,有许许多多的全局符号, Linux内核不使用符号名,而是经过变量或函数的地址来识别变量或函数名,好比不是使用size_t BytesRead这样的符号,而是像c0343f20这样引用这个变量。 对于使用计算机的人来讲,更喜欢使用那些像size_t BytesRead这样的名字,而不喜欢像c0343f20这样的名字。内核主要是用c写的,因此编译器/链接器容许咱们编码时使用符号名,而内核运行时使用地址。 然而,在有的状况下,咱们须要知道符号的地址,或者须要知道地址对应的符号,这由符号表来完成,符号表是全部符号连同它们的地址的列表。
Linux 符号表使用到2个文件: /proc/ksyms 、System.map 。/proc/ksyms是一个“proc file”,在内核引导时建立。实际上,它并不真正的是一个文件,它只不过是内核数据的表示,却给人们是一个磁盘文件的假象,这从它的文件大小是0能够看出来。然而,System.map是存在于你的文件系统上的实际文件。当你编译一个新内核时,各个符号名的地址要发生变化,你的老的System.map 具备的是错误的符号信息,每次内核编译时产生一个新的System.map,你应当用新的System.map来取代老的System.map。
虽然内核自己并不真正使用System.map,但其它程序好比klogd, lsof和ps等软件须要一个正确的System.map。若是你使用错误的或没有System.map,klogd的输出将是不可靠的,这对于排除程序故障会带来困难。没有System.map,你可能会面临一些使人烦恼的提示信息。 另外少数驱动须要System.map来解析符号,没有为你当前运行的特定内核建立的System.map它们就不能正常工做。 Linux的内核日志守护进程klogd为了执行名称-地址解析,klogd须要使用System.map。System.map应当放在使用它的软件可以找到它的地方。执行:man klogd可知,若是没有将System.map做为一个变量的位置给klogd,那么它将按照下面的顺序,在三个地方查找System.map: /boot/System.map 、/System.map 、/usr/src/linux/System.map
System.map也有版本信息,klogd可以智能地查找正确的映象(map)文件。
makefile menuconfig过程讲解
当咱们在执行make menuconfig这个命令时,系统到底帮咱们作了哪些工做呢?这里面一共涉及到了一下几个文件咱们来一一探讨
Linux内核根目录下的scripts文件夹
arch/$ARCH/Kconfig文件、各层目录下的Kconfig文件
Linux内核根目录下的makefile文件、各层目录下的makefile文件
Linux内核根目录下的的.config文件、arch/$ARCH/configs/下的文件
Linux内核根目录下的 include/generated/autoconf.h文件
1)scripts文件夹存放的是跟make menuconfig配置界面的图形绘制相关的文件,咱们做为使用者无需关心这个文件夹的内容
2)当咱们执行make menuconfig命令出现上述蓝色配置界面之前,系统帮咱们作了如下工做:
首先系统会读取arch/$ARCH/目录下的Kconfig文件生成整个配置界面选项(Kconfig是整个linux配置机制的核心),那么ARCH环境变量的值等于多少呢?它是由linux内核根目录下的makefile文件决定的,在makefile下有此环境变量的定义:
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
..........
export KBUILD_BUILDHOST := $(SUBARCH)
ARCH ?= $(SUBARCH)
CROSS_COMPILE ?=
或者经过 make ARCH=arm menuconfig命令来生成配置界面
好比教务处进行考试,考试科数可能有外语、语文、数学等科,这里咱们选择了arm科可进行考试,系统就会读取arm/arm/kconfig文件生成配置选项(选择了arm科的卷子),系统还提供了x86科、milps科等10几门功课的考试题
3)假设教务处比较“仁慈”,为了怕某些同窗作错试题,还给咱们准备了一份参考答案(默认配置选项),存放在arch/$ARCH/configs/目录下,对于arm科来讲就是arch/arm/configs文件夹:
此文件夹中有许多选项,系统会读取哪一个呢?内核默认会读取linux内核根目录下.config文件做为内核的默认选项(试题的参考答案),咱们通常会根据开发板的类型从中选取一个与咱们开发板最接近的系列到Linux内核根目录下(选择一个最接近的参考答案)
4).config
假设教务处留了一个心眼,他提供的参考答案并不彻底正确(.config文件与咱们的板子并非彻底匹配),这时咱们能够选择直接修改.config文件而后执行make menuconfig命令读取新的选项。可是通常咱们不采起这个方案,咱们选择在配置界面中经过空格、esc、回车选择某些选项选中或者不选中,最后保存退出的时候,Linux内核会把新的选项(正确的参考答案)更新到.config中,此时咱们能够把.config重命名为其它文件保存起来(当你执行make distclean时系统会把.config文件删除),之后咱们再配置内核时就不须要再去arch/arm/configs下考取相应的文件了,省去了从新配置的麻烦,直接将保存的.config文件复制为.config便可.
5)通过以上两步,咱们能够正确的读取、配置咱们须要的界面了,那么他们如何跟makefile文件创建编译关系呢?当你保存make menuconfig选项时,系统会除了会自动更新.config外,还会将全部的选项以宏的形式保存在Linux内核根目录下的 include/generated/autoconf.h文件下
内核中的源代码就都会包含以上.h文件,跟宏的定义状况进行条件编译。
当咱们须要对一个文件总体选择如是否编译时,还须要修改对应的makefile文件,例如:
咱们选择是否要编译s3c2410_ts.c这个文件时,makefile会根据CONFIG_TOUCHSCREEN_S3C2410来决定是编译此文件,此宏是在Kconfig文件中定义,当咱们配置完成后,会出如今.config及autconf中,至此,咱们就完成了整个linux内核的编译过程。
最后咱们会发现,整个linux内核配置过程当中,留给用户的接口其实只有各层Kconfig、makefile文件以及对应的源文件。
好比咱们若是想要给内核增长一个功能,而且经过make menuconfig控制其声称过程
首先须要作的工做是:修改对应目录下的Kconfig文件,按照Kconfig语法增长对应的选项;
其次执行make menuconfig选择编译进内核或者不编译进内核,或者编译为模块,.config文件和autoconf.h文件会自动生成;
最后修改对应目录下的makefile文件完成编译选项的添加;
最后的最后执行make命令进行编译。
Kconfig和Makefile
Linux内核源码树的每一个目录下都有两个文档Kconfig和Makefile。分布到各目录的Kconfig构成了一个分布式的内核配置数据库,每一个Kconfig分别描述了所属目录源文档相关的内核配置菜单。在执行内核配置make menuconfig时,从Kconfig中读出菜单,用户选择后保存到.config的内核配置文档中。在内核编译时,主Makefile调用这 个.config,就知道了用户的选择。这个内容说明了,Kconfig就是对应着内核的每级配置菜单。
假如要想添加新的驱动到内核的源码中,要修改Kconfig,这样就可以选择这个驱动,假如想使这个驱动被编译,则要修改Makefile。添加新 的驱动时须要修改的文档有两种(若是添加的只是文件,则只需修改当前层Kconfig和Makefile文件;若是添加的是目录,则需修改当前层和目录下 的共一对Kconfig和Makefile)Kconfig和Makefile。要想知道怎么修改这两种文档,就要知道两种文档的语法结构,Kconfig的语法参见参考文献《【linux-2.6.31】kbuild》。
Makefile 文件包含 5 部分:
Makefile 顶层的 Makefile
.config 内核配置文件
arch/$(ARCH)/Makefile 体系结构 Makefile
scripts/Makefile.* 适用于全部 kbuild Makefile 的通用规则等
kbuild Makefiles 大约有 500 个这样的文件
顶层 Makefile 读取内核配置操做产生的.config 文件,顶层 Makefile 构建两个主要的目标:vmlinux(内核映像)和 modules(全部模块文件)。它经过递归访问内核源码树下的子目录来构建这些目标。访问哪些子目录取决于内核配置。顶层 Makefile 包含一个体系结构 Makefile,由 arch/$(ARCH)/Makefile 指定。体系结构 Makefile 文件为顶层 Makefile 提供了特定体系结构的信息。每一个子目录各有一个 kbuild文件和Makefile 文件来执行从上层传递下来的命令。kbuild和Makefile文件利用.config 文件中的信息来构造由 kbuild 构建内建或者模块对象使用的各类文件列表。scripts/Makefile.*包含全部的定义/规则,等等。这些信息用于使用 kbuild和 Makefile 文件来构建内核。Makefile的语法参见参考文献《【linux-2.6.31】kbuild》。
参考文献
【linux-2.6.31】内核编译指南.pdf
【linux-2.6.31】kbuild.pdf
Linker script in Linux.pdf
linux内核的配置机制及其编译过程
Linux内核编译过程详解
Linux Kconfig及Makefile学习