……c++
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 40005 #define eps 1e-12 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } string s; int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif cin >> s; if(s.substr(0,4) == "YAKI") puts("Yes"); else puts("No"); }
枚举N有几个按了,M有几列按了
对于一个点,行和列只有一个按了,那么这个点是黑的spa
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 40005 #define eps 1e-12 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,M,K; int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif read(N);read(M);read(K); for(int i = 0 ; i <= N ; ++i) { for(int j = 0 ; j <= M ; ++j) { int res = i * (M - j) + (N - i) * j; if(res == K) {puts("Yes");return 0;} } } puts("No"); return 0; }
从最外一圈开始推,咱们输出须要几个4个同样的,2个同样的,可能还有须要1个单个的
而后用每一个字母开始填4个同样的,再填2个同样的,再填1个单个的
若是没填完,那么就构造不出来code
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 40005 #define eps 1e-12 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,M; int num[30],cnt[10]; char s[105][105]; int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif read(N);read(M); for(int i = 1 ; i <= N ; ++i) { scanf("%s",s[i] + 1); } for(int i = 1 ; i <= N ; ++i) { for(int j = 1 ; j <= M ; ++j) { num[s[i][j] - 'a']++; } } int lr = 1,rr = N,lc = 1,rc = M; while(lr <= rr && lc <= rc) { int r = 0; if(lr != rr) r += 2; if(lc != rc) r += 2; if(!r) r = 1; cnt[r]++; for(int i = 1 ; i <= N ; ++i) { if(lr + i <= rr - i) { int r = 0; if(lr + i != rr - i) r += 2; if(lc != rc) r += 2; cnt[r]++; } else break; } for(int i = 1 ; i <= M ; ++i) { if(lc + i <= rc - i) { int r = 0; if(lc + i != rc - i) r += 2; if(rr != lr) r += 2; cnt[r]++; } else break; } ++lr;--rr;++lc;--rc; } for(int i = 0 ; i < 26 ; ++i) { while(cnt[4] && num[i] >= 4) {num[i] -= 4;--cnt[4];} while(cnt[2] && num[i] >= 2) {num[i] -= 2;--cnt[2];} while(cnt[1] && num[i] >= 1) {num[i] -= 1;--cnt[1];} } if(cnt[1] || cnt[2] || cnt[4]) puts("No"); else puts("Yes"); return 0; }
把图旋转45度后,再放一个每块大小是d*d的方格,而后一行用RB间隔染色,下一行用GY间隔染色ip
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 200005 #define eps 1e-12 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int H,W,d; bool vis[1005][1005]; string s = "RBGY"; void Solve() { read(H);read(W);read(d); for(int i = 1 ; i <= H ; ++i) { for(int j = 1 ; j <= W ; ++j) { int t = 0; if((i + j - 1) / d & 1) t |= 2; if((i - j + 500 - 1) / d & 1) t |= 1; putchar(s[t]); } enter; } } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
第一次确定是一个竖直的完整画下来,或者一个水平的完整的画下来
用竖直的举例
就是枚举一个区间\([L,R]\)都是完整的竖直画下来,方案数是2的这个区间上下都有人的列个数次幂
而后算先后的那一块方案数
确定是先横着一刀,再竖着一刀,再横着一刀
咱们把横着的轮廓线画出来,再把一边的翻过去,发现是一个路径计数,可是要求对称轴必须有一个竖线
加入竖直有X我的,上有Y人,下有Z人,那么若是直接走过去,方案数是
\(\binom{X + Y + Z}{X}\)
那咱们考虑一个序列,咱们就走\(X - 1\)个竖直的,横向走到对称轴后,紧接着就添加一个竖直的
方案数就是
\(\binom{X + Y + Z - 1}{X - 1}\)就是方案数ci
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 200500 #define eps 1e-12 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } const int MOD = 998244353; int N,M; char a[4][MAXN]; int fac[MAXN * 2],invfac[MAXN * 2],f[MAXN],b[MAXN],sum[4][MAXN],s[MAXN]; int pw[MAXN],ipw[MAXN],ans; int inc(int a,int b) { return a + b >= MOD ? a + b - MOD : a + b; } int mul(int a,int b) { return 1LL * a * b % MOD; } int fpow(int x,int c) { int res = 1,t = x; while(c) { if(c & 1) res = mul(res,t); t = mul(t,t); c >>= 1; } return res; } void update(int &x,int y) { x = inc(x,y); } int C(int n,int m) { if(n < m) return 0; return mul(fac[n],mul(invfac[m],invfac[n - m])); } void CalcV() { memset(f,0,sizeof(f)); memset(b,0,sizeof(b)); memset(s,0,sizeof(s)); int X = sum[0][N],Y,Z; for(int i = 0 ; i <= M ; ++i) { if(a[2][i + 1] == '0' && a[3][i + 1] == '0') continue; Y = sum[2][i],Z = sum[3][i]; if(!X) { if(Y == 0 && Z == 0) f[i] = 1; else f[i] = 0; } else { f[i] = C(X + Y + Z - 1,X - 1); } } X = sum[1][N]; for(int i = M + 1 ; i >= 1 ; --i) { if(a[2][i - 1] == '0' && a[3][i - 1] == '0') continue; Y = sum[2][M] - sum[2][i - 1],Z = sum[3][M] - sum[3][i - 1]; if(!X) { if(Y == 0 && Z == 0) b[i] = 1; else b[i] = 0; } else { b[i] = C(X + Y + Z - 1,X - 1); } } for(int i = 1 ; i <= M ; ++i) s[i] = s[i - 1] + (a[2][i] == '1' && a[3][i] == '1'); for(int i = 0 ; i <= M ; ++i) { f[i] = mul(f[i],ipw[s[i]]); } for(int i = M + 1 ; i >= 1 ; --i) { b[i] = inc(b[i + 1],mul(b[i],pw[s[i - 1]])); } for(int i = 1 ; i <= M ; ++i) { update(ans,mul(f[i - 1],b[i + 1])); } } void CalcH() { memset(f,0,sizeof(f)); memset(b,0,sizeof(b)); memset(s,0,sizeof(s)); int X = sum[2][M],Y,Z; for(int i = 0 ; i <= N ; ++i) { if(a[0][i + 1] == '0' && a[1][i + 1] == '0') continue; Y = sum[0][i],Z = sum[1][i]; if(!X) { if(Y == 0 && Z == 0) f[i] = 1; else f[i] = 0; } else { f[i] = C(X + Y + Z - 1,X - 1); } } X = sum[3][M]; for(int i = N + 1 ; i >= 1 ; --i) { if(a[0][i - 1] == '0' && a[1][i - 1] == '0') continue; Y = sum[0][N] - sum[0][i - 1],Z = sum[1][N] - sum[1][i - 1]; if(!X) { if(Y == 0 && Z == 0) b[i] = 1; else b[i] = 0; } else { b[i] = C(X + Y + Z - 1,X - 1); } } for(int i = 1 ; i <= N ; ++i) s[i] = s[i - 1] + (a[0][i] == '1' && a[1][i] == '1'); for(int i = 0 ; i <= N ; ++i) { f[i] = mul(f[i],ipw[s[i]]); } for(int i = N + 1 ; i >= 1 ; --i) { b[i] = inc(b[i + 1],mul(b[i],pw[s[i - 1]])); } for(int i = 1 ; i <= N ; i++) { update(ans,mul(f[i - 1],b[i + 1])); } } void Solve() { read(N);read(M); for(int i = 0 ; i <= 3 ; ++i) scanf("%s",a[i] + 1); for(int i = 0 ; i <= 3 ; ++i) { int T = (i <= 1 ? N : M); for(int j = 1 ; j <= T ; ++j) { sum[i][j] = sum[i][j - 1] + (a[i][j] == '1'); } } int T = 2 * (N + M) + 10; fac[0] = 1; for(int i = 1 ; i <= T ; ++i) { fac[i] = mul(fac[i - 1],i); } invfac[T] = fpow(fac[T],MOD - 2); for(int i = T - 1 ; i >= 0 ; --i) { invfac[i] = mul(invfac[i + 1],i + 1); } pw[0] = 1; T = max(N,M); for(int i = 1 ; i <= T ; ++i) { pw[i] = mul(pw[i - 1],2); } ipw[0] = 1; for(int i = 1 ; i <= T ; ++i) { ipw[i] = mul(ipw[i - 1],(MOD + 1) / 2); } CalcV(); CalcH(); if(!sum[0][N] && !sum[1][N] && !sum[2][M] && !sum[3][M]) ans = 1; out(ans);enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
对于一个单个的区间来讲,咱们能够用
若是\(a = 2^{k}\)能用k次合成
若是\(2^{k} < a < 2^{k + 1}\),能用k+1次合成
咱们记录一下每一个区间最左的元素被选了几回,最右的区间选了几回
若是是\(a = 2^{k}\),那么两边就选了k次
另外一种有两个状况,左边k次右边k+1次,左边k+1次右边k次
每一个相邻的地方能够减小\(min(r_{i},l_{i + 1})\)
用一个dp实现就行get
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 100005 #define eps 1e-12 //#define ivorysi using namespace std; typedef long long int64; typedef unsigned int u32; typedef double db; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N; int a[MAXN],cnt[MAXN],val[MAXN][2]; int64 dp[MAXN][2]; void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) { read(a[i]); int k = -1,x = a[i]; while(x) {++k;x >>= 1;} cnt[i] = k; } for(int i = 1 ; i <= N ; ++i) { dp[i][0] = 1e16;dp[i][1] = 1e16; int s = cnt[i],t = cnt[i]; if(a[i] != (1 << cnt[i])) ++t; val[i][0] = s;val[i][1] = t; for(int j = 0 ; j <= 1 ; ++j) { dp[i][0] = min(dp[i][0],dp[i - 1][j] + t - min(t,val[i - 1][j])); dp[i][1] = min(dp[i][1],dp[i - 1][j] + t - min(s,val[i - 1][j])); } } out(min(dp[N][0],dp[N][1]));enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }