Nested DollsTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1876 Accepted Submission(s): 524
Problem Description
Dilworth is the world’s most prominent collector of Russian nested dolls: he literally has thousands of them! You know, the wooden hollow dolls of different sizes of which the smallest doll is contained in the second smallest, and this doll is in turn contained in the next one and so forth. One day he wonders if there is another way of nesting them so he will end up with fewer nested dolls? After all, that would make his collection even more magnificent! He unpacks each nested doll and measures the width and height of each contained doll. A doll with width w1 and height h1 will fit in another doll of width w2 and height h2 if and only if w1 < w2 and h1 < h2. Can you help him calculate the smallest number of nested dolls possible to assemble from his massive list of measurements?
Input
On the first line of input is a single positive integer 1 <= t <= 20 specifying the number of test cases to follow. Each test case begins with a positive integer 1 <= m <= 20000 on a line of itself telling the number of dolls in the test case. Next follow 2m positive integers w1, h1,w2, h2, . . . ,wm, hm, where wi is the width and hi is the height of doll number i. 1 <= wi, hi <= 10000 for all i.
Output
For each test case there should be one line of output containing the minimum number of nested dolls possible.
Sample Input
Sample Output
Source
Recommend
lcy
|
|
最后发现都同样,贪心仍是 DP , 分析了 hdu 1257 就知道了Orzphp
/***************************************************************************************** E Accepted 540 KB 343 ms C++ 1172 B 2013-08-04 21:16:03 题意:给你 N 个娃娃, 每一个娃娃有特定的 w 和 h 当且仅当 d1.w < d2.w && d1.h < d2.h , d1 才能够放入 d2中 问:最少还能够剩下几个娃娃 算法:应该是要用 dp 作了,这里用贪心Orz 思路:感受相似于导弹拦截系统 先对娃娃们排序:先按照 w 从大到小排序, w 相同,则按照 h 从小到大排序 关于排序:先按照 w 从大到小排序能够理解吧【把小的嵌套到大的当中去】 对于 w 相同时 h 从小到大排序 若是 m 个 w 相同, 那么必然是嵌套在 m 个不一样的娃娃中 【多是比它大的,也多是它自己】 先选择 h 最小的嵌入到前面可以知足条件的娃娃中, 再新用一个娃娃嵌套 h 倒数第二小的娃娃, 那么这时嵌套了第二个娃娃的东西,必定能比已经嵌套了第个一的更能嵌套其它的娃娃 w 相同 ,而 h 更优【h大】 好比说这堆娃娃有这样几个娃娃 5 30 400 (1) 10 200 (1) 10 300 (2) w 相同,必然从新嵌入不一样的娃娃 9 250 (2) 8 250 (3) 那么最优的结果就是 3, 第一个娃娃嵌套第二个; 第三个娃娃嵌套第四个; 第五个娃娃单独嵌套。 可是若是你按照 w 相同时 h 从大到小排序就是这样 5 30 400 (1) 10 300 (1) 10 200 (2) 9 250 (3) 8 250 (4) 同样的数据, 答案是 4 *****************************************************************************************/ #include<stdio.h> #include<string.h> #include<algorithm> #include<iostream> using namespace std; const int maxn = 20000+10; const int INF = 10000+10; struct Node { int w,h; }node[maxn], dp[maxn]; bool cmp(Node a, Node b) { if(a.w == b.w) return a.h < b.h; else return a.w > b.w; } int main() { int T; int n; scanf("%d", &T); while(T--) { scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d%d", &node[i].w, &node[i].h); dp[i].w = dp[i].h = INF; //假设初始化有 N 个能够嵌套的娃娃 } sort(node, node+n, cmp); //for(int i = 0; i < n; i++) printf("%d %d\n", node[i].w, node[i].h); printf("\n"); for(int i = 0; i < n; i++) { int j = 0; while(dp[j].w <= node[i].w || dp[j].h <= node[i].h) j++; dp[j].w = node[i].w; //不断更新为当前状况 dp[j].h = node[i].h; } // for(int i = 0; i < n; i++) printf("%d %d\n", dp[i].w, dp[i].h); printf("\n"); int ans = 0; for(int i = 0; i < n; i++) if(dp[i].h != INF) //看有几个嵌套过 ans++; printf("%d\n", ans); } return 0; }