本文目的:展现如何利用PyTorch进行手写数字识别。html
1 导入相关库,定义一些参数
import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from torch.utils.data import DataLoader #定义一些参数 BATCH_SIZE = 64 EPOCHS = 10 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
2 准备数据
使用Pytorch自带数据集。python
#图像预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) #训练集 train_set = datasets.MNIST('data', train=True, transform=transform, download=True) train_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True) #测试集 test_set = datasets.MNIST('data', train=False, transform=transform, download=True) test_loader = DataLoader(test_set, batch_size=BATCH_SIZE, shuffle=True)
3 准备模型
#搭建模型 class ConvNet(nn.Module): #图像输入是(batch,1,28,28) def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 10, (3,3)) #输入通道数为1,输出通道数为10,卷积核(3,3) self.conv2 = nn.Conv2d(10, 32, (3,3)) self.fc1 = nn.Linear(12*12*32, 100) self.fc2 = nn.Linear(100, 10) def forward(self, x): x = self.conv1(x) #(batch,10,26,26) x = F.relu(x) x = self.conv2(x) #(batch,32,24,24) x = F.relu(x) x = F.max_pool2d(x, (2,2)) #(batch,32,12,12) x = x.view(x.size(0), -1) #flatten (batch,12*12*32) x = self.fc1(x) #(batch,100) x = F.relu(x) x = self.fc2(x) #(batch,10) out = F.log_softmax(x, dim=1) #softmax激活并取对数,数值上更稳定 return out
4 训练
#定义模型和优化器 model = ConvNet().to(DEVICE) #模型移至GPU optimizer = torch.optim.Adam(model.parameters()) #定义训练函数 def train(model, device, train_loader, optimizer, epoch): #跑一个epoch model.train() #开启训练模式,即启用BatchNormalization和Dropout等 for batch_idx, (data, target) in enumerate(train_loader): #每次产生一个batch data, target = data.to(device), target.to(device) #产生的数据移至GPU output = model(data) loss = F.nll_loss(output, target) #CrossEntropyLoss = log_softmax + NLLLoss optimizer.zero_grad() #全部梯度清零 loss.backward() #反向传播求全部参数梯度 optimizer.step() #沿负梯度方向走一步 if(batch_idx+1) % 234 == 0: print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format( epoch, (batch_idx+1) * len(data), len(train_loader.dataset), 100. * (batch_idx+1) / len(train_loader), loss.item())) #定义测试函数 def test(model, device, test_loader): model.eval() #测试模式,不启用BatchNormalization和Dropout test_loss = 0 correct = 0 with torch.no_grad(): #避免梯度跟踪 for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() #将一批损失相加 pred = output.max(1, keepdim=True)[1] #找到几率最大的下标 #上句效果等同于 pred = torch.argmax(output, dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) #len(train_loader)为batch数,len(train_loader.dataset)为样本总数 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) #开始训练 for epoch in range(1, EPOCHS + 1): train(model, DEVICE, train_loader, optimizer, epoch) test(model, DEVICE, test_loader)
注意,torch.max()有两种用法:git
- 直接传入一个tensor,则返回全局最大值;
- torch.max(a, dim, [keepdim])返回一个tuple,前者为最大值结果,后者为indices(效果同argmax);
- 详见 https://pytorch.org/docs/stable/torch.html?highlight=max#torch.max
- 此处 output.max() 与 torch.max()相似,只不过无需传入tensor
最终结果以下:github
5 小结
- 任务流程:准备数据,准备模型,训练
- 如何使用PyTorch自带数据集进行训练
- 自定义模型须要实现forward函数
- model.train()和model.eval()做用
- 最后一层x的交叉熵两种方式等价:CrossEntropyLoss = log_softmax + nll_loss
- torch.max()有两种用法,返回值不同
Reference函数