★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/ )
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址:http://www.javashuo.com/article/p-kxgcmonv-mb.html
➤若是连接不是山青咏芝的博客园地址,则多是爬取做者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持做者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★html
On a campus represented as a 2D grid, there are N
workers and M
bikes, with N <= M
. Each worker and bike is a 2D coordinate on this grid.git
We assign one unique bike to each worker so that the sum of the Manhattan distances between each worker and their assigned bike is minimized.github
The Manhattan distance between two points p1
and p2
is Manhattan(p1, p2) = |p1.x - p2.x| + |p1.y - p2.y|
.微信
Return the minimum possible sum of Manhattan distances between each worker and their assigned bike.app
Example 1:this
Input: workers = [[0,0],[2,1]], bikes = [[1,2],[3,3]] Output: 6 Explanation: We assign bike 0 to worker 0, bike 1 to worker 1. The Manhattan distance of both assignments is 3, so the output is 6.
Example 2:spa
Input: workers = [[0,0],[1,1],[2,0]], bikes = [[1,0],[2,2],[2,1]] Output: 4 Explanation: We first assign bike 0 to worker 0, then assign bike 1 to worker 1 or worker 2, bike 2 to worker 2 or worker 1. Both assignments lead to sum of the Manhattan distances as 4.
Note:code
0 <= workers[i][0], workers[i][1], bikes[i][0], bikes[i][1] < 1000
1 <= workers.length <= bikes.length <= 10
在由 2D 网格表示的校园里有 n
位工人(worker
)和 m
辆自行车(bike
),n <= m
。全部工人和自行车的位置都用网格上的 2D 坐标表示。htm
咱们为每一位工人分配一辆专属自行车,使每一个工人与其分配到的自行车之间的曼哈顿距离最小化。blog
p1
和 p2
之间的曼哈顿距离为 Manhattan(p1, p2) = |p1.x - p2.x| + |p1.y - p2.y|
。
返回每一个工人与分配到的自行车之间的曼哈顿距离的最小可能总和。
示例 1:
输入:workers = [[0,0],[2,1]], bikes = [[1,2],[3,3]] 输出:6 解释: 自行车 0 分配给工人 0,自行车 1 分配给工人 1 。分配获得的曼哈顿距离都是 3, 因此输出为 6 。
示例 2:
输入:workers = [[0,0],[1,1],[2,0]], bikes = [[1,0],[2,2],[2,1]] 输出:4 解释: 先将自行车 0 分配给工人 0,再将自行车 1 分配给工人 1(或工人 2),自行车 2 给工人 2(或工人 1)。如此分配使得曼哈顿距离的总和为 4。
提示:
0 <= workers[i][0], workers[i][1], bikes[i][0], bikes[i][1] < 1000
1 <= workers.length <= bikes.length <= 10
1 class Solution { 2 var dp:[[Int]] = [[Int]](repeating:[Int](repeating:-1,count:11),count:1 << 11) 3 func assignBikes(_ workers: [[Int]], _ bikes: [[Int]]) -> Int { 4 var workers = workers 5 var bikes = bikes 6 return F(&workers, &bikes, 0, 0) 7 } 8 9 func getCost(_ a:[Int],_ b:[Int]) -> Int 10 { 11 var ret:Int = 0 12 for i in 0..<a.count 13 { 14 ret += abs(a[i] - b[i]) 15 } 16 return ret 17 } 18 19 func F(_ w:inout [[Int]], _ b:inout [[Int]],_ bikesTaken:Int,_ workerId:Int) -> Int 20 { 21 var x:Int = b.count 22 if workerId == w.count {return 0} 23 else if bikesTaken + 1 == (1 << x) {return 0} 24 else if dp[bikesTaken][workerId] != -1 {return dp[bikesTaken][workerId]} 25 26 var curr:Int = 1000000000 27 for i in 0..<x 28 { 29 if (bikesTaken & (1 << i)) != 0 {continue} 30 curr = min(curr, F(&w, &b, bikesTaken | (1 << i), workerId + 1) + getCost(b[i], w[workerId])) 31 } 32 dp[bikesTaken][workerId] = curr 33 return curr 34 } 35 }
回溯法:Time Limit Exceeded
1 class Solution { 2 var ans:Int = -1 3 var vis:[Bool] = [Bool](repeating:false,count:20) 4 func assignBikes(_ workers: [[Int]], _ bikes: [[Int]]) -> Int { 5 var list1:[Position] = [Position]() 6 var list2:[Position] = [Position]() 7 for pos in workers 8 { 9 list1.append(Position(pos[0] , pos[1])) 10 } 11 for pos in bikes 12 { 13 list2.append(Position(pos[0] , pos[1])) 14 } 15 backtracking(list1 , 0 , list2 , 0) 16 return ans 17 } 18 19 func getDist(_ pos1:Position ,_ pos2:Position) -> Int 20 { 21 return abs(pos1.x - pos2.x) + abs(pos1.y - pos2.y) 22 } 23 24 func backtracking(_ list1:[Position],_ current:Int,_ list2:[Position],_ dist:Int) 25 { 26 if current == list1.count 27 { 28 if dist < ans || ans < 0 {ans = dist} 29 } 30 else 31 { 32 for i in 0..<list2.count 33 { 34 if !vis[i] 35 { 36 vis[i] = true 37 backtracking(list1 , current + 1 , list2 , dist + getDist(list1[current] , list2[i])) 38 vis[i] = false 39 } 40 } 41 } 42 } 43 } 44 45 class Position 46 { 47 var x:Int 48 var y:Int 49 init(_ x:Int,_ y:Int) 50 { 51 self.x = x 52 self.y = y 53 } 54 }
1 class Solution { 2 var minNum:Int = Int.max 3 func assignBikes(_ workers: [[Int]], _ bikes: [[Int]]) -> Int { 4 var arrBool:[Bool] = [Bool](repeating:false,count:bikes.count) 5 dfs(workers, 0, bikes,&arrBool, 0) 6 return minNum 7 } 8 9 func dfs(_ workers: [[Int]],_ i:Int,_ bikes: [[Int]],_ used:inout [Bool],_ sum:Int) 10 { 11 if i == workers.count 12 { 13 minNum = min(minNum, sum); 14 return 15 } 16 17 for j in 0..<bikes.count 18 { 19 if used[j] {continue} 20 used[j] = true 21 dfs(workers, i+1, bikes, &used, sum + getDistance(workers[i], bikes[j])) 22 used[j] = false 23 } 24 } 25 26 func getDistance(_ p1:[Int],_ p2:[Int]) -> Int 27 { 28 return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1]) 29 } 30 }