NLP文本多标签分类---HierarchicalAttentionNetwork

最近一直在作多标签分类任务,学习了一种层次注意力模型,基本结构以下: git

简单说,就是两层attention机制,一层基于词,一层基于句。github

首先是词层面: 输入采用word2vec造成基本语料向量后,采用双向GRU抽特征: 学习

一句话中的词对于当前分类的重要性不一样,采用attention机制实现以下: spa

tensorflow代码实现以下:3d

··· def attention_word_level(self, hidden_state):code

"""
    input1:self.hidden_state: hidden_state:list,len:sentence_length,element:[batch_size*num_sentences,hidden_size*2]
    input2:sentence level context vector:[batch_size*num_sentences,hidden_size*2]
    :return:representation.shape:[batch_size*num_sentences,hidden_size*2]
    """
    hidden_state_ = tf.stack(hidden_state, axis=1)  # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
    # 0) one layer of feed forward network
    hidden_state_2 = tf.reshape(hidden_state_, shape=[-1,
                                                      self.hidden_size * 2])  # shape:[batch_size*num_sentences*sequence_length,hidden_size*2]
    # hidden_state_:[batch_size*num_sentences*sequence_length,hidden_size*2];W_w_attention_sentence:[,hidden_size*2,,hidden_size*2]
    hidden_representation = tf.nn.tanh(tf.matmul(hidden_state_2,
                                                 self.W_w_attention_word) + self.W_b_attention_word)  # shape:[batch_size*num_sentences*sequence_length,hidden_size*2]
    hidden_representation = tf.reshape(hidden_representation, shape=[-1, self.sequence_length,
                                                                     self.hidden_size * 2])  # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
    # attention process:1.get logits for each word in the sentence. 2.get possibility distribution for each word in the sentence. 3.get weighted sum for the sentence as sentence representation.
    # 1) get logits for each word in the sentence.
    hidden_state_context_similiarity = tf.multiply(hidden_representation,
                                                   self.context_vecotor_word)  # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
    attention_logits = tf.reduce_sum(hidden_state_context_similiarity,
                                     axis=2)  # shape:[batch_size*num_sentences,sequence_length]
    # subtract max for numerical stability (softmax is shift invariant). tf.reduce_max:Computes the maximum of elements across dimensions of a tensor.
    attention_logits_max = tf.reduce_max(attention_logits, axis=1,
                                         keep_dims=True)  # shape:[batch_size*num_sentences,1]
    # 2) get possibility distribution for each word in the sentence.
    p_attention = tf.nn.softmax(
        attention_logits - attention_logits_max)  # shape:[batch_size*num_sentences,sequence_length]
    # 3) get weighted hidden state by attention vector
    p_attention_expanded = tf.expand_dims(p_attention, axis=2)  # shape:[batch_size*num_sentences,sequence_length,1]
    # below sentence_representation'shape:[batch_size*num_sentences,sequence_length,hidden_size*2]<----p_attention_expanded:[batch_size*num_sentences,sequence_length,1];hidden_state_:[batch_size*num_sentences,sequence_length,hidden_size*2]
    sentence_representation = tf.multiply(p_attention_expanded,
                                          hidden_state_)  # shape:[batch_size*num_sentences,sequence_length,hidden_size*2]
    sentence_representation = tf.reduce_sum(sentence_representation,
                                            axis=1)  # shape:[batch_size*num_sentences,hidden_size*2]
    return sentence_representation  # shape:[batch_size*num_sentences,hidden_size*2]
复制代码

···cdn

句子层面和词层面基本相同 双向GRU输入,softmax计算attention blog

最后基于句子层面的输出,计算分类 ip

指数损失 element

github源代码:github.com/zhaowei555/…

相关文章
相关标签/搜索