JavaShuo
栏目
标签
【论文阅读】NIPS2018 Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
时间 2021-05-26
标签
机器学习
深度学习
自然语言处理
繁體版
原文
原文链接
论文地址:http://papers.nips.cc/paper/8072-co-teaching-robust-training-o 论文代码:https://github.com/bhanML/Co-teaching (PyTorch) 针对噪声数据的训练,目前主要有两种方式: 训练noise transition matrix,例如:在softmax输出之后再接一层softmax 先从带噪数
>>阅读原文<<
相关文章
1.
论文阅读:Bag of Freebies for Training Object Detection Neural Networks
2.
论文阅读:Deep Neural Networks for Object Detection
3.
论文阅读——Robust Unsupervised Neural Machine Translation with Adversarial Training
4.
读文献——《ImageNet classification with deep convolutional neural networks》
5.
[论文阅读]Bag of Tricks for Image Classification with Convolutional Neural Networks
6.
论文阅读《Knowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks》
7.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
8.
《ImageNet Classification with Deep Convolutional Neural Networks》论文阅读
9.
论文阅读:Bag of Tricks for Image Classification with Convolutional Neural Networks
10.
论文--阅读翻译笔记-Reducing the Dimensionality of Data with Neural Networks
更多相关文章...
•
RSS 阅读器
-
RSS 教程
•
C# 文本文件的读写
-
C#教程
•
JDK13 GA发布:5大特性解读
•
Scala 中文乱码解决
相关标签/搜索
论文阅读
CV论文阅读
networks
labels
noisy
extremely
外文阅读
robust
neural
training
Thymeleaf 教程
PHP教程
Redis教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github并且新建仓库push代码,从已有仓库clone代码,并且push
3.
设计模式9——模板方法模式
4.
avue crud form组件的快速配置使用方法详细讲解
5.
python基础B
6.
从零开始···将工程上传到github
7.
Eclipse插件篇
8.
Oracle网络服务 独立监听的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目录管理命令基础
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文阅读:Bag of Freebies for Training Object Detection Neural Networks
2.
论文阅读:Deep Neural Networks for Object Detection
3.
论文阅读——Robust Unsupervised Neural Machine Translation with Adversarial Training
4.
读文献——《ImageNet classification with deep convolutional neural networks》
5.
[论文阅读]Bag of Tricks for Image Classification with Convolutional Neural Networks
6.
论文阅读《Knowledge Projection for Effective Design of Thinner and Faster Deep Neural Networks》
7.
论文阅读——Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
8.
《ImageNet Classification with Deep Convolutional Neural Networks》论文阅读
9.
论文阅读:Bag of Tricks for Image Classification with Convolutional Neural Networks
10.
论文--阅读翻译笔记-Reducing the Dimensionality of Data with Neural Networks
>>更多相关文章<<