本文介绍caret包中的创建模型及验证的过程。主要涉及的函数有train(),predict(),confusionMatrix(),以及pROC包中的画roc图的相关函数。html
在进行建模时,需对模型的参数进行优化,在caret包中其主要函数命令是train。git
train(x, y, method = "rf", preProcess = NULL, ..., weights = NULL, metric = ifelse(is.factor(y), "Accuracy", "RMSE"), maximize = ifelse(metric %in% c("RMSE", "logLoss", "MAE"), FALSE, TRUE), trControl = trainControl(), tuneGrid = NULL, tuneLength = ifelse(trControl$method == "none", 1, 3))
下面来具体介绍一下trainControl函数github
trainControl(method = "boot", number = ifelse(grepl("cv", method), 10, 25), repeats = ifelse(grepl("[d_]cv$", method), 1, NA), p = 0.75, search = "grid", initialWindow = NULL, horizon = 1, fixedWindow = TRUE, skip = 0, verboseIter = FALSE, returnData = TRUE, returnResamp = "final",.....)
用kernlab包中的spam数据来进行实验app
(篇幅有限,仅为部分预测结果)dom