pix2pix tensorflow试验(GAN之图像转图像的操作)

GAN是一种典型的概率生成模型,其核心思想是:找出给定观测数据内部的统计规律,并且能够基于所得到的概率分布模型,产生全新的,与观测数据类似的数据。 概率生成模型可以用于自然图像的生成。假设给定1000万张图片之后,生成模型可以自动学习到其内部分布,能够解释给定的训练图片,并同时生成新的图片。 与庞大的真实数据相比,概率生成模型的参数个数要远远小于数据的数量。因此,在训练过程中,生成模型会被强迫去发
相关文章
相关标签/搜索