Go 去找个对象吧

前言

个人读者中应该大部分都是 Java 从业者,不知道写 Java 这些年是否真的有找到对象?python

没找到也不要紧,总不能在一棵树上吊死,咱们也能够来 Go 这边看看,说不定会有新发现。编程

开个玩笑,本文会以一个 Javaer 的角度来聊聊 Go 语言中的面向对象。json

<!--more-->编程语言

OOP

面向对象这一词来源于Object Oriented Programming,也就是你们常说的 OOPoop

对于 Go 是否为面向对象的编程语言,这点也是讨论已久;不过咱们能够先看看官方的说法:学习

其余的咱们暂且不看,Yes and No. 这个回答就比较微妙了,为了这篇文章还能写下去咱们先认为 Go 是面向对象的。this


面向对象有着三个重要特征:url

  1. 封装
  2. 继承
  3. 多态

封装

Go 并无 Class 的概念,却可使用 struct 来达到相似的效果,好比咱们能够对汽车声明以下:spa

type Car struct {
    Name string
    Price float32
}

Java 不一样的是,struct 中只存储数据,不能定义行为,也就是方法。3d

固然也能为 Car 定义方法,只是写法略有不一样:

func (car *Car) Info()  {
    fmt.Printf("%v price: [%v]", car.Name, car.Price)
}

func main() {
    car := Car{
        Name: "BMW",
        Price: 100.0,
    }
    car.Info()

}

在方法名称前加上 (car *Car) 便能将该方法指定给 Car ,其中的 car 参数能够理解为 Java 中的 this 以及 Python 中的 self,就语义来讲我以为 go 更加简单一些。

毕竟我见过很多刚学习 Java 的萌新很是不理解 this 的含义与用法。

匿名结构体

既然谈到结构体了那就不得不聊聊 Go 支持的匿名结构体(虽然和面向对象没有太大关系)

func upload(path string) {
    body, err := ioutil.ReadAll(res.Body)
    smsRes := struct {
        Success bool   `json:"success"`
        Code    string `json:"code"`
        Message string `json:"message"`
        Data    struct {
            URL string `json:"url"`
        } `json:"data"`
        RequestID string `json:"RequestId"`
    }{}
    err = json.Unmarshal(body, &smsRes)
    fmt.Printf(smsRes.Message)
}

Go 容许咱们在方法内部建立一个匿名的结构体,后续还能直接使用该结构体来获取数据。

这点在咱们调用外部接口解析响应数据时很是有用,建立一个临时的结构体也不用额为维护;同时还能用面向对象的方式获取数据。

相比于将数据存放在 map 中用字段名获取要优雅许多。

继承

Go 语言中并无 JavaC++ 这样的继承概念,类之间的关系更加扁平简洁。

各位 Javaer 应该都看过这类图:

相信大部分新手看到这图时就已经懵逼,更别说研究各个类之间的关系了。

不过这样好处也明显:若是咱们抽象合理,整个系统结构会很好维护和扩展;但前提是咱们能抽象合理。

Go 语言中更推荐使用组合的方式来复用数据:

type ElectricCar struct {
    Car
    Battery int32
}

func main() {
    xp := ElectricCar{
        Car{Name: "xp", Price: 200},
        70,
    }
    fmt.Println(xp.Name)

}

这样咱们即可以将公共部分的数据组合到新的 struct 中,并可以直接使用。

接口(多态)

面向接口编程的好处这里就不在赘述了,咱们来看看 Go 是如何实现的:

type ElectricCar struct {
    Car
    Battery int32
}
type PetrolCar struct {
    Car
    Gasoline int32
}

//定义一个接口
type RunService interface {
    Run()
}

// 实现1
func (car *PetrolCar) Run() {
    fmt.Printf("%s PetrolCar run \n", car.Name)
}

// 实现2
func (car *ElectricCar)Run() {
    fmt.Printf("%s ElectricCar run \n", car.Name)
}

func Do(run RunService) {
    run.Run()
}

func main() {
    xp := ElectricCar{
        Car{Name: "xp", Price: 200},
        70,
    }
    petrolCar := PetrolCar{
        Car{Name: "BMW", Price: 300},
        50,
    }
    Do(&xp)
    Do(&petrolCar)

}

首先定义了一个接口 RunServiceElectricCarPetrolCar 都实现了该接口。

能够看到 Go 实现一个接口的方式并非 implement,而是用结构体声明一个相同签名的方法。

这种实现模式被称为”鸭子类型“,Python 中的接口也是相似的鸭子类型

详细介绍能够参考这篇:Python 中的面向接口编程

接口固然也是能够扩展的,相似于 struct 中的嵌套:

type DiService interface {
    Di()
}

//定义一个接口
type RunService interface {
    DiService
    Run()
}

得益于 Go 的强类型,刚才的 struct 也得实现 DiService 这个接口才能编译经过。

总结

到这里应该是能理解官方所说的 Yes and No. 的含义了;Go 对面向对象的语法不像 Java 那么严苛,甚至整个语言中都找不到 object(对象) 这个关键词;可是利用 Go 里的其余特性也是能实现 OOP 的。

是否为面向对象我以为并不重要,主要目的是咱们能写出易扩展好维护的代码。

例如官方标准库中就有许多利用接口编程的例子:

因为公司技术栈如今主要由 Go 为主,后续也会继续更新 Go 相关的实战经验;若是你也对学习 Go 感兴趣那不妨点个关注吧。

qrcode_for_gh_3a954a025f10_258.jpg

相关文章
相关标签/搜索