通过前三篇文章的学习,Volley的用法咱们已经掌握的差很少了,可是对于Volley的工做原理,恐怕有不少朋友还不是很清楚。所以,本篇文章中咱们就来一块儿阅读一下Volley的源码,将它的工做流程总体地梳理一遍。同时,这也是Volley系列的最后一篇文章了。java
其实,Volley的官方文档中自己就附有了一张Volley的工做流程图,以下图所示。缓存
多数朋友忽然看到一张这样的图,应该会和我同样,感受一头雾水吧?没错,目前咱们对Volley背后的工做原理尚未一个概念性的理解,直接就来看这张图天然会有些吃力。不过不要紧,下面咱们就去分析一下Volley的源码,以后再从新来看这张图就会好理解多了。服务器
提及分析源码,那么应该从哪儿开始看起呢?这就要回顾一下Volley的用法了,还记得吗,使用Volley的第一步,首先要调用Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么咱们天然要从这个方法开始看起了,代码以下所示:网络
public static RequestQueue newRequestQueue(Context context) { return newRequestQueue(context, null); }
这个方法仅仅只有一行代码,只是调用了newRequestQueue()的方法重载,并给第二个参数传入null。那咱们看下带有两个参数的newRequestQueue()方法中的代码,以下所示:app
public static RequestQueue newRequestQueue(Context context, HttpStack stack) { File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR); String userAgent = "volley/0"; try { String packageName = context.getPackageName(); PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0); userAgent = packageName + "/" + info.versionCode; } catch (NameNotFoundException e) { } if (stack == null) { if (Build.VERSION.SDK_INT >= 9) { stack = new HurlStack(); } else { stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent)); } } Network network = new BasicNetwork(stack); RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network); queue.start(); return queue; }
能够看到,这里在第10行判断若是stack是等于null的,则去建立一个HttpStack对象,这里会判断若是手机系统版本号是大于9的,则建立一个HurlStack的实例,不然就建立一个HttpClientStack的实例。实际上HurlStack的内部就是使用HttpURLConnection进行网络通信的,而HttpClientStack的内部则是使用HttpClient进行网络通信的,这里为何这样选择呢?ide
建立好了HttpStack以后,接下来又建立了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,而后将RequestQueue返回,这样newRequestQueue()的方法就执行结束了。post
那么RequestQueue的start()方法内部到底执行了什么东西呢?咱们跟进去瞧一瞧:学习
public void start() { stop(); // Make sure any currently running dispatchers are stopped. // Create the cache dispatcher and start it. mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery); mCacheDispatcher.start(); // Create network dispatchers (and corresponding threads) up to the pool size. for (int i = 0; i < mDispatchers.length; i++) { NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork, mCache, mDelivery); mDispatchers[i] = networkDispatcher; networkDispatcher.start(); } }
这里先是建立了一个CacheDispatcher的实例,而后调用了它的start()方法,接着在一个for循环里去建立NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认状况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)以后,就会有五个线程一直在后台运行,不断等待网络请求的到来,其中CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。ui
获得了RequestQueue以后,咱们只须要构建出相应的Request,而后调用RequestQueue的add()方法将Request传入就能够完成网络请求操做了,那么不用说,add()方法的内部确定有着很是复杂的逻辑,咱们来一块儿看一下:this
public <T> Request<T> add(Request<T> request) { // Tag the request as belonging to this queue and add it to the set of current requests. request.setRequestQueue(this); synchronized (mCurrentRequests) { mCurrentRequests.add(request); } // Process requests in the order they are added. request.setSequence(getSequenceNumber()); request.addMarker("add-to-queue"); // If the request is uncacheable, skip the cache queue and go straight to the network. if (!request.shouldCache()) { mNetworkQueue.add(request); return request; } // Insert request into stage if there's already a request with the same cache key in flight. synchronized (mWaitingRequests) { String cacheKey = request.getCacheKey(); if (mWaitingRequests.containsKey(cacheKey)) { // There is already a request in flight. Queue up. Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey); if (stagedRequests == null) { stagedRequests = new LinkedList<Request<?>>(); } stagedRequests.add(request); mWaitingRequests.put(cacheKey, stagedRequests); if (VolleyLog.DEBUG) { VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey); } } else { // Insert 'null' queue for this cacheKey, indicating there is now a request in // flight. mWaitingRequests.put(cacheKey, null); mCacheQueue.add(request); } return request; } }
能够看到,在第11行的时候会判断当前的请求是否能够缓存,若是不能缓存则在第12行直接将这条请求加入网络请求队列,能够缓存的话则在第33行将这条请求加入缓存队列。在默认状况下,每条请求都是能够缓存的,固然咱们也能够调用Request的setShouldCache(false)方法来改变这一默认行为。
OK,那么既然默认每条请求都是能够缓存的,天然就被添加到了缓存队列中,因而一直在后台等待的缓存线程就要开始运行起来了,咱们看下CacheDispatcher中的run()方法,代码以下所示:
public class CacheDispatcher extends Thread { …… @Override public void run() { if (DEBUG) VolleyLog.v("start new dispatcher"); Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); // Make a blocking call to initialize the cache. mCache.initialize(); while (true) { try { // Get a request from the cache triage queue, blocking until // at least one is available. final Request<?> request = mCacheQueue.take(); request.addMarker("cache-queue-take"); // If the request has been canceled, don't bother dispatching it. if (request.isCanceled()) { request.finish("cache-discard-canceled"); continue; } // Attempt to retrieve this item from cache. Cache.Entry entry = mCache.get(request.getCacheKey()); if (entry == null) { request.addMarker("cache-miss"); // Cache miss; send off to the network dispatcher. mNetworkQueue.put(request); continue; } // If it is completely expired, just send it to the network. if (entry.isExpired()) { request.addMarker("cache-hit-expired"); request.setCacheEntry(entry); mNetworkQueue.put(request); continue; } // We have a cache hit; parse its data for delivery back to the request. request.addMarker("cache-hit"); Response<?> response = request.parseNetworkResponse( new NetworkResponse(entry.data, entry.responseHeaders)); request.addMarker("cache-hit-parsed"); if (!entry.refreshNeeded()) { // Completely unexpired cache hit. Just deliver the response. mDelivery.postResponse(request, response); } else { // Soft-expired cache hit. We can deliver the cached response, // but we need to also send the request to the network for // refreshing. request.addMarker("cache-hit-refresh-needed"); request.setCacheEntry(entry); // Mark the response as intermediate. response.intermediate = true; // Post the intermediate response back to the user and have // the delivery then forward the request along to the network. mDelivery.postResponse(request, response, new Runnable() { @Override public void run() { try { mNetworkQueue.put(request); } catch (InterruptedException e) { // Not much we can do about this. } } }); } } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } } } }
代码有点长,咱们只挑重点看。首先在11行能够看到一个while(true)循环,说明缓存线程始终是在运行的,接着在第23行会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,若是不为空的话再判断该缓存是否已过时,若是已通过期了则一样把这条请求加入到网络请求队列中,不然就认为不须要重发网络请求,直接使用缓存中的数据便可。以后会在第39行调用Request的parseNetworkResponse()方法来对数据进行解析,再日后就是将解析出来的数据进行回调了,这部分代码咱们先跳过,由于它的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么咱们等下合并在一块儿看就行了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码以下所示:
public class NetworkDispatcher extends Thread { …… @Override public void run() { Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); Request<?> request; while (true) { try { // Take a request from the queue. request = mQueue.take(); } catch (InterruptedException e) { // We may have been interrupted because it was time to quit. if (mQuit) { return; } continue; } try { request.addMarker("network-queue-take"); // If the request was cancelled already, do not perform the // network request. if (request.isCanceled()) { request.finish("network-discard-cancelled"); continue; } addTrafficStatsTag(request); // Perform the network request. NetworkResponse networkResponse = mNetwork.performRequest(request); request.addMarker("network-http-complete"); // If the server returned 304 AND we delivered a response already, // we're done -- don't deliver a second identical response. if (networkResponse.notModified && request.hasHadResponseDelivered()) { request.finish("not-modified"); continue; } // Parse the response here on the worker thread. Response<?> response = request.parseNetworkResponse(networkResponse); request.addMarker("network-parse-complete"); // Write to cache if applicable. // TODO: Only update cache metadata instead of entire record for 304s. if (request.shouldCache() && response.cacheEntry != null) { mCache.put(request.getCacheKey(), response.cacheEntry); request.addMarker("network-cache-written"); } // Post the response back. request.markDelivered(); mDelivery.postResponse(request, response); } catch (VolleyError volleyError) { parseAndDeliverNetworkError(request, volleyError); } catch (Exception e) { VolleyLog.e(e, "Unhandled exception %s", e.toString()); mDelivery.postError(request, new VolleyError(e)); } } } }
一样地,在第7行咱们看到了相似的while(true)循环,说明网络请求线程也是在不断运行的。在第28行的时候会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,咱们来看下它的performRequest()方法,以下所示:
public class BasicNetwork implements Network { …… @Override public NetworkResponse performRequest(Request<?> request) throws VolleyError { long requestStart = SystemClock.elapsedRealtime(); while (true) { HttpResponse httpResponse = null; byte[] responseContents = null; Map<String, String> responseHeaders = new HashMap<String, String>(); try { // Gather headers. Map<String, String> headers = new HashMap<String, String>(); addCacheHeaders(headers, request.getCacheEntry()); httpResponse = mHttpStack.performRequest(request, headers); StatusLine statusLine = httpResponse.getStatusLine(); int statusCode = statusLine.getStatusCode(); responseHeaders = convertHeaders(httpResponse.getAllHeaders()); // Handle cache validation. if (statusCode == HttpStatus.SC_NOT_MODIFIED) { return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, request.getCacheEntry() == null ? null : request.getCacheEntry().data, responseHeaders, true); } // Some responses such as 204s do not have content. We must check. if (httpResponse.getEntity() != null) { responseContents = entityToBytes(httpResponse.getEntity()); } else { // Add 0 byte response as a way of honestly representing a // no-content request. responseContents = new byte[0]; } // if the request is slow, log it. long requestLifetime = SystemClock.elapsedRealtime() - requestStart; logSlowRequests(requestLifetime, request, responseContents, statusLine); if (statusCode < 200 || statusCode > 299) { throw new IOException(); } return new NetworkResponse(statusCode, responseContents, responseHeaders, false); } catch (Exception e) { …… } } } }
这段方法中大多都是一些网络请求细节方面的东西,咱们并不须要太多关心,须要注意的是在第14行调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是建立的实例,默认状况下若是系统版本号大于9就建立的HurlStack对象,不然建立HttpClientStack对象。前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,咱们就再也不跟进去阅读了,以后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。
在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,由于不一样种类的Request解析的方式也确定不一样。还记得咱们在上一篇文章中学习的自定义Request的方式吗?其中parseNetworkResponse()这个方法就是必需要重写的。
在解析完了NetworkResponse中的数据以后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码以下所示:
public void postResponse(Request<?> request, Response<?> response, Runnable runnable) { request.markDelivered(); request.addMarker("post-response"); mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable)); }
其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就能够保证该对象中的run()方法就是在主线程当中运行的了,咱们看下run()方法中的代码是什么样的:
private class ResponseDeliveryRunnable implements Runnable { private final Request mRequest; private final Response mResponse; private final Runnable mRunnable; public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) { mRequest = request; mResponse = response; mRunnable = runnable; } @SuppressWarnings("unchecked") @Override public void run() { // If this request has canceled, finish it and don't deliver. if (mRequest.isCanceled()) { mRequest.finish("canceled-at-delivery"); return; } // Deliver a normal response or error, depending. if (mResponse.isSuccess()) { mRequest.deliverResponse(mResponse.result); } else { mRequest.deliverError(mResponse.error); } // If this is an intermediate response, add a marker, otherwise we're done // and the request can be finished. if (mResponse.intermediate) { mRequest.addMarker("intermediate-response"); } else { mRequest.finish("done"); } // If we have been provided a post-delivery runnable, run it. if (mRunnable != null) { mRunnable.run(); } } }
代码虽然很少,但咱们并不须要行行阅读,抓住重点看便可。其中在第22行调用了Request的deliverResponse()方法,有没有感受很熟悉?没错,这个就是咱们在自定义Request时须要重写的另一个方法,每一条网络请求的响应都是回调到这个方法中,最后咱们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就能够了。
好了,到这里咱们就把Volley的完整执行流程所有梳理了一遍,你是否是已经感受已经很清晰了呢?对了,还记得在文章一开始的那张流程图吗,刚才还不能理解,如今咱们再来从新看下这张图:
其中蓝色部分表明主线程,绿色部分表明缓存线程,橙色部分表明网络线程。咱们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,若是发现能够找到相应的缓存结果就直接读取缓存并解析,而后回调给主线程。若是在缓存中没有找到结果,则将这条请求加入到网络请求队列中,而后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。
怎么样,是否是感受如今理解这张图已经变得轻松简单了?好了,到此为止咱们就把Volley的用法和源码所有学习完了,相信你已经对Volley很是熟悉并能够将它应用到实际项目当中了,那么Volley彻底解析系列的文章到此结束,感谢你们有耐心看到最后。