Redis的客户端与服务端采用叫作 RESP(Redis Serialization Protocol)的网络通讯协议交换数据,客户端和服务器经过 TCP 链接来进行数据交互, 服务器默认的端口号为 6379 。客户端和服务器发送的命令或数据一概以 \r\n (CRLF)结尾。git
RESP支持五种数据类型:github
状态回复(status reply):以“+”开头,表示正确的状态信息,”+”后就是具体信息,好比:redis
redis 127.0.0.1:6379> set ss sdf OK
其实它真正回复的数据是:+OK\r\n
错误回复(error reply):以”-“开头,表示错误的状态信息,”-“后就是具体信息,好比:数组
redis 127.0.0.1:6379> incr ss (error) ERR value is not an integer or out of range
整数回复(integer reply):以”:”开头,表示对某些操做的回复好比DEL, EXISTS, INCR等等服务器
redis 127.0.0.1:6379> incr aa (integer) 1
批量回复(bulk reply):以”$”开头,表示下一行的字符串长度,具体字符串在下一行中网络
多条批量回复(multi bulk reply):以”*”开头,表示消息体总共有多少行(不包括当前行)”*”是具体行数session
redis 127.0.0.1:6379> get ss "sdf" 客户端->服务器 *2\r\n $3\r\n get\r\n $2\r\n ss\r\n 服务器->客户端 $3\r\n sdf\r\n
注:以上写的都是XX回复,并非说协议格式只是适用于服务器->客户端,客户端->服务器端也一样使用以上协议格式,其实双端协议格式的统一更加方便扩展app
回到正题,咱们这里是经过netty来模拟redis服务器,能够整理一下思路大概分为这么几步:框架
1.须要一个底层的通讯框架,这里选择的是netty4.0.25 2.须要对客户端穿过来的数据进行解码(Decoder),其实就是分别处理以上5种数据类型 3.解码之后咱们封装成更加利于理解的命令(Command),好比:set<name> foo hello<params> 4.有了命令之后就是处理命令(execute),其实咱们能够去链接正在的redis服务器,不过这里只是简单的模拟 5.处理完以后就是封装回复(Reply),而后编码(Encoder),须要根据不一样的命令分别返回之后5种数据类型 6.测试验证,经过redis-cli去链接netty模拟的redis服务器,看可否返回正确的结果
以上思路参考github上的一个项目:https://github.com/spullara/redis-protocol,测试代码也是在此基础上作了一个简化ide
第一步:通讯框架netty
<dependency> <groupId>io.netty</groupId> <artifactId>netty-all</artifactId> <version>4.0.25.Final</version> </dependency>
第二步:数据类型解码
public class RedisCommandDecoder extends ReplayingDecoder<Void> { public static final char CR = '\r'; public static final char LF = '\n'; public static final byte DOLLAR_BYTE = '$'; public static final byte ASTERISK_BYTE = '*'; private byte[][] bytes; private int arguments = 0; @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception { if (bytes != null) { int numArgs = bytes.length; for (int i = arguments; i < numArgs; i++) { if (in.readByte() == DOLLAR_BYTE) { int l = RedisReplyDecoder.readInt(in); if (l > Integer.MAX_VALUE) { throw new IllegalArgumentException( "Java only supports arrays up to " + Integer.MAX_VALUE + " in size"); } int size = (int) l; bytes[i] = new byte[size]; in.readBytes(bytes[i]); if (in.bytesBefore((byte) CR) != 0) { throw new RedisException("Argument doesn't end in CRLF"); } // Skip CRLF(\r\n) in.skipBytes(2); arguments++; checkpoint(); } else { throw new IOException("Unexpected character"); } } try { out.add(new Command(bytes)); } finally { bytes = null; arguments = 0; } } else if (in.readByte() == ASTERISK_BYTE) { int l = RedisReplyDecoder.readInt(in); if (l > Integer.MAX_VALUE) { throw new IllegalArgumentException( "Java only supports arrays up to " + Integer.MAX_VALUE + " in size"); } int numArgs = (int) l; if (numArgs < 0) { throw new RedisException("Invalid size: " + numArgs); } bytes = new byte[numArgs][]; checkpoint(); decode(ctx, in, out); } else { in.readerIndex(in.readerIndex() - 1); byte[][] b = new byte[1][]; b[0] = in.readBytes(in.bytesBefore((byte) CR)).array(); in.skipBytes(2); out.add(new Command(b, true)); } } }
首先经过接受到以“*”开头的多条批量类型初始化二维数组byte[][] bytes,以读取到第一个以\r\n结尾的数据做为数组的长度,而后再处理以“$”开头的批量类型。
以上除了处理咱们熟悉的批量和多条批量类型外,还处理了没有任何标识的数据,其实有一个专门的名字叫Inline命令:
有些时候仅仅是telnet链接Redis服务,或者是仅仅向Redis服务发送一个命令进行检测。虽然Redis协议能够很容易的实现,可是使用Interactive sessions 并不理想,并且redis-cli也不老是可使用。基于这些缘由,Redis支持特殊的命令来实现上面描述的状况。这些命令的设计是很人性化的,被称做Inline 命令。
第三步:封装command对象
由第二步中能够看到不论是commandName仍是params都统一放在了字节二维数组里面,最后封装在command对象里面
public class Command { public static final byte[] EMPTY_BYTES = new byte[0]; private final Object name; private final Object[] objects; private final boolean inline; public Command(Object[] objects) { this(null, objects, false); } public Command(Object[] objects, boolean inline) { this(null, objects, inline); } private Command(Object name, Object[] objects, boolean inline) { this.name = name; this.objects = objects; this.inline = inline; } public byte[] getName() { if (name != null) return getBytes(name); return getBytes(objects[0]); } public boolean isInline() { return inline; } private byte[] getBytes(Object object) { byte[] argument; if (object == null) { argument = EMPTY_BYTES; } else if (object instanceof byte[]) { argument = (byte[]) object; } else if (object instanceof ByteBuf) { argument = ((ByteBuf) object).array(); } else if (object instanceof String) { argument = ((String) object).getBytes(Charsets.UTF_8); } else { argument = object.toString().getBytes(Charsets.UTF_8); } return argument; } public void toArguments(Object[] arguments, Class<?>[] types) { for (int position = 0; position < types.length; position++) { if (position >= arguments.length) { throw new IllegalArgumentException( "wrong number of arguments for '" + new String(getName()) + "' command"); } if (objects.length - 1 > position) { arguments[position] = objects[1 + position]; } } } }
全部的数据都放在了Object数组里面,并且能够经过getName方法知道Object[0]就是commandName
第四步:执行命令
在经历了解码和封装以后,下面须要实现handler类,用来处理消息
public class RedisCommandHandler extends SimpleChannelInboundHandler<Command> { private Map<String, Wrapper> methods = new HashMap<String, Wrapper>(); interface Wrapper { Reply<?> execute(Command command) throws RedisException; } public RedisCommandHandler(final RedisServer rs) { Class<? extends RedisServer> aClass = rs.getClass(); for (final Method method : aClass.getMethods()) { final Class<?>[] types = method.getParameterTypes(); methods.put(method.getName(), new Wrapper() { @Override public Reply<?> execute(Command command) throws RedisException { Object[] objects = new Object[types.length]; try { command.toArguments(objects, types); return (Reply<?>) method.invoke(rs, objects); } catch (Exception e) { return new ErrorReply("ERR " + e.getMessage()); } } }); } } @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.flush(); } @Override protected void channelRead0(ChannelHandlerContext ctx, Command msg) throws Exception { String name = new String(msg.getName()); Wrapper wrapper = methods.get(name); Reply<?> reply; if (wrapper == null) { reply = new ErrorReply("unknown command '" + name + "'"); } else { reply = wrapper.execute(msg); } if (reply == StatusReply.QUIT) { ctx.close(); } else { if (msg.isInline()) { if (reply == null) { reply = new InlineReply(null); } else { reply = new InlineReply(reply.data()); } } if (reply == null) { reply = ErrorReply.NYI_REPLY; } ctx.write(reply); } } }
在实例化handler的时候传入了一个RedisServer对象,这个方法是真正用来处理redis命令的,理论上这个对象应该支持redis的全部命令,不过这里只是测试全部只提供了2个方法:
public interface RedisServer { public BulkReply get(byte[] key0) throws RedisException; public StatusReply set(byte[] key0, byte[] value1) throws RedisException; }
在channelRead0方法中咱们能够拿到以前封装好的command方法,而后经过命令名称执行操做,这里的RedisServer也很简单,只是用简单的hashmap进行临时的保存数据。
第五步:封装回复
第四步种咱们能够看处处理完命令以后,返回了一个Reply对象
public interface Reply<T> { byte[] CRLF = new byte[] { RedisReplyDecoder.CR, RedisReplyDecoder.LF }; T data(); void write(ByteBuf os) throws IOException; }
根据上面提到的5种类型再加上一个inline命令,根据不一样的数据格式进行拼接,好比StatusReply:
public void write(ByteBuf os) throws IOException { os.writeByte('+'); os.writeBytes(statusBytes); os.writeBytes(CRLF); }
因此对应Decoder的Encoder就很简单了:
public class RedisReplyEncoder extends MessageToByteEncoder<Reply<?>> { @Override public void encode(ChannelHandlerContext ctx, Reply<?> msg, ByteBuf out) throws Exception { msg.write(out); } }
只须要将封装好的Reply返回给客户端就好了
最后一步:测试
启动类:
public class Main { private static Integer port = 6379; public static void main(String[] args) throws InterruptedException { final RedisCommandHandler commandHandler = new RedisCommandHandler( new SimpleRedisServer()); ServerBootstrap b = new ServerBootstrap(); final DefaultEventExecutorGroup group = new DefaultEventExecutorGroup(1); try { b.group(new NioEventLoopGroup(), new NioEventLoopGroup()) .channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, 100).localAddress(port) .childOption(ChannelOption.TCP_NODELAY, true) .childHandler(new ChannelInitializer<SocketChannel>() { @Override public void initChannel(SocketChannel ch) throws Exception { ChannelPipeline p = ch.pipeline(); p.addLast(new RedisCommandDecoder()); p.addLast(new RedisReplyEncoder()); p.addLast(group, commandHandler); } }); ChannelFuture f = b.bind().sync(); f.channel().closeFuture().sync(); } finally { group.shutdownGracefully(); } } }
ChannelPipeline分别添加了RedisCommandDecoder、RedisReplyEncoder和RedisCommandHandler,同时咱们启动的端口和Redis服务器端口是同样的也是6379
打开redis-cli程序:
redis 127.0.0.1:6379> get dsf (nil) redis 127.0.0.1:6379> set dsf dsfds OK redis 127.0.0.1:6379> get dsf "dsfds" redis 127.0.0.1:6379>
从结果能够看出和正常使用redis服务器没有差异
总结
这样作的意义其实就是能够把它当作一个redis代理,由这个代理服务器去进行sharding处理,客户端不直接访问redis服务器,对客户端来讲,后台redis集群是彻底透明的。
我的博客:codingo.xyz