无论怎么说,这都是一道十分神仙的NOIp题git
你能够说它狗,但不能够否定它就是NOIp的难度spa
首先这道题很显然是道图论题仍是一道图论三合一(最短路+拓扑+图上DP)code
先考虑最短路,咱们分别以\(1\)和\(n\)为起点得出与其它点的最短路(虽然NOIp应该不会卡SPFA,但仍是建议写稳定的DJ)排序
咱们先考虑把\(-1\)的状况给判掉,分析一下发现此时一定有0环(此时能够在0环上无限刷路径)string
可是要注意一下,当且仅当0环上的任意一点\(i\)到\(1\)的最短路\(dis_{1,i}\)以及它到\(n\)的最短路\(dis_{i,n}\)知足\(dis_{1,i}+dis_{i,n}<=dis_{1,n}+k\),由于这个0环首先得在可行路径上it
处理0环的具体操做只要把0边权的边单独拎出来作拓扑排序就行了。io
而后考虑如何统计答案,咱们发现\(k<=50\)。所以咱们图上DP计数。class
设\(f_{i,j}\)表示到第\(i\)个点时,偏移量(偏移量为当前路径长度与\(dis_{1,i}\)的差)为\(j\)的方案数:queue
咱们再枚举\(i\)能够到达的点\(p\),若\(dis_{1,i}+w+j-dis_{1,p}<=k\),而后就能够用\(f_{i,j}\)更新\(f_{p,dis_{1,i}+w+j-dis_{1,p}}\)了(\(w\)为\(i\rightarrow p\)的边权)统计
最后要注意的是枚举的状态顺序,咱们发现对于全部的点\(i\),当它的\(dis_{1,i}\)越小时,它越早更新
特别地,当都是0权的边排序时,应该按以前的拓扑顺序排
CODE
#include<cstdio> #include<cctype> #include<cstring> #include<algorithm> #include<queue> using namespace std; const int N=100005,K=55; struct edge { int to,next,v; }e[N<<1],re[N<<1]; struct Zero_edge { int to,next; }ze[N<<1]; struct Small { int num,s; bool operator <(const Small x) const { return x.s<s; } }; struct data { int d,id,num; }a[N]; int head[N],rhead[N],zhead[N],t,n,m,k,p,x,y,z,cnt,zcnt,ru[N],q[N],f[N][K],dis[N],INF,r[N]; bool vis[N]; priority_queue <Small> small; inline char tc(void) { static char fl[100000],*A=fl,*B=fl; return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++; } inline void read(int &x) { x=0; char ch; while (!isdigit(ch=tc())); while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc())); } inline void write(int x) { if (x>9) write(x/10); putchar(x%10+'0'); } inline void clear(void) { memset(head,-1,sizeof(head)); memset(rhead,-1,sizeof(rhead)); memset(zhead,-1,sizeof(zhead)); memset(ru,0,sizeof(ru)); cnt=zcnt=0; } inline void add(int x,int y,int z) { e[++cnt].to=y; e[cnt].next=head[x]; e[cnt].v=z; head[x]=cnt; } inline void radd(int x,int y,int z) { re[cnt].to=y; re[cnt].next=rhead[x]; re[cnt].v=z; rhead[x]=cnt; } inline void zadd(int x,int y) { ze[++zcnt].to=y; ze[zcnt].next=zhead[x]; zhead[x]=zcnt; ++ru[y]; } inline void top_sort(void) { register int i,H=0,T=0; for (i=1;i<=n;++i) { if (!ru[i]) q[++T]=i,a[i].id=T; a[i].num=i; } while (H<T) { int now=q[++H]; for (i=zhead[now];~i;i=ze[i].next) if (!(--ru[ze[i].to])) q[++T]=ze[i].to,a[ze[i].to].id=T; } } inline void front_dijkstra(void) { memset(dis,63,sizeof(dis)); memset(vis,0,sizeof(vis)); small.push((Small){1,0}); INF=dis[0]; dis[1]=a[1].d=0; while (!small.empty()) { int now=small.top().num; small.pop(); if (vis[now]) continue; vis[now]=1; for (register int i=head[now];~i;i=e[i].next) if (dis[e[i].to]>dis[now]+e[i].v) { a[e[i].to].d=dis[e[i].to]=dis[now]+e[i].v; small.push((Small){e[i].to,dis[e[i].to]}); } } } inline void back_dijkstra(void) { memset(dis,63,sizeof(dis)); memset(vis,0,sizeof(vis)); small.push((Small){n,0}); dis[n]=0; while (!small.empty()) { int now=small.top().num; small.pop(); if (vis[now]) continue; vis[now]=1; for (register int i=rhead[now];~i;i=re[i].next) if (dis[re[i].to]>dis[now]+re[i].v) { dis[re[i].to]=dis[now]+re[i].v; small.push((Small){re[i].to,dis[re[i].to]}); } } } inline bool check(void) { for (register int i=1;i<=n;++i) if (ru[i]&&a[i].d+dis[i]<=a[n].d+k) return 1; return 0; } inline bool cmp(data a,data b) { if (a.d<b.d) return 1; if (a.d>b.d) return 0; return a.id<b.id; } inline void inc(int &x,int y) { if ((x+=y)>=p) x-=p; } inline int DP(void) { memset(f,0,sizeof(f)); f[1][0]=1; int ans=0; for (register int s=0;s<=k;++s) { for (register int i=1;i<=n;++i) { int now=a[i].num; for (register int j=head[now];~j;j=e[j].next) if (a[i].d+s+e[j].v-a[r[e[j].to]].d<=k) inc(f[e[j].to][a[i].d+s+e[j].v-a[r[e[j].to]].d],f[now][s]); } inc(ans,f[n][s]); } return ans; } int main() { //freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout); register int i; read(t); while (t--) { read(n); read(m); read(k); read(p); clear(); for (i=1;i<=m;++i) { read(x); read(y); read(z); add(x,y,z); radd(y,x,z); if (!z) zadd(x,y); } top_sort(); front_dijkstra(); back_dijkstra(); if (check()) { puts("-1"); continue; } sort(a+1,a+n+1,cmp); for (i=1;i<=n;++i) r[a[i].num]=i; write(DP()); putchar('\n'); } return 0; }