Hive窗口函数

@mysql

官方文档地址

Hive官网,点我就进
oracle,sqlserver都提供了窗口函数,可是在mysql5.5和5.6都没有提供窗口函数!算法

窗口函数: 窗口+函数sql

  • 窗口: 函数运行时计算的数据集的范围
  • 函数: 运行的函数!
    仅仅支持如下函数:

Windowing functions

  • LEAD (scalar_expression [,offset] [,default]): 返回当前行如下N行的指定列的列值!若是找不到,就采用默认值
  • LAG (scalar_expression [,offset] [,default]): 返回当前行以上N行的指定列的列值!若是找不到,就采用默认值
  • FIRST_VALUE(列名,[false(默认)]):返回当前窗口指定列的第一个值,第二个参数若是为true,表明加入第一个值为null,跳过空值,继续寻找!
  • LAST_VALUE(列名,[false(默认)]):返回当前窗口指定列的最后一个值,第二个参数若是为true,表明加入第一个值为null,跳过空值,继续寻找!

统计类的函数(通常都须要结合over使用):min,max,avg,sum,count

排名分析:express

  • RANK
  • ROW_NUMBER
  • DENSE_RANK
  • CUME_DIST
  • PERCENT_RANK
  • NTILE

注意:不是全部的函数在运行都是能够经过改变窗口的大小,来控制计算的数据集的范围!全部的排名函数和LAG,LEAD,支持使用over(),可是在over()中不能定义 window_clauseapache

格式: 函数 over( partition by 字段 ,order by 字段 window_clause )windows

窗口的大小能够经过windows_clause来指定:

(rows | range) between (unbounded | [num]) preceding and ([num] preceding | current row | (unbounded | [num]) following)
(rows | range) between current row and (current row | (unbounded | [num]) following)
(rows | range) between [num] following and (unbounded | [num]) following

特殊状况:

  • ①在over()中既没有出现windows_clause,也没有出现order by,窗口默认为rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING
  • ②在over()中(没有出现windows_clause),指定了order by,窗口默认为rows between UNBOUNDED PRECEDING and CURRENT ROW

窗口函数和分组有什么区别?

  • ①若是是分组操做,select后只能写分组后的字段
  • ②若是是窗口函数,窗口函数是在指定的窗口内,对每条记录都执行一次函数
  • ③若是是分组操做,有去重效果,而partition不去重!

练习

(9) 查询前20%时间的订单信息
精确算法:oracle

select *
 from
 (select name,orderdate,cost,cume_dist() over(order by orderdate ) cdnum
 from  business) tmp
 where cdnum<=0.2

不精确计算:函数

select *
 from
 (select name,orderdate,cost,ntile(5) over(order by orderdate ) cdnum
 from  business) tmp
 where cdnum=1

(8)查询顾客的购买明细及顾客最近三次cost花费sqlserver

最近三次: 当前和以前两次当前+前一次+后一次scala

当前和以前两次:

select name,orderdate,cost,sum(cost) over(partition by name order by orderdate rows between 2 PRECEDING and CURRENT  row) 
 from business

当前+前一次+后一次:

select name,orderdate,cost,sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and 1  FOLLOWING) 
 from business

select name,orderdate,cost,cost+
 lag(cost,1,0) over(partition by name order by orderdate )+
 lead(cost,1,0) over(partition by name order by orderdate )
 from business

(7) 查询顾客的购买明细及顾客本月最后一次购买的时间

select name,orderdate,cost,LAST_VALUE(orderdate,true) over(partition by name,substring(orderdate,1,7) order by orderdate rows between CURRENT  row and UNBOUNDED  FOLLOWING) 
 from business

(6) 查询顾客的购买明细及顾客本月第一次购买的时间

select name,orderdate,cost,FIRST_VALUE(orderdate,true) over(partition by name,substring(orderdate,1,7) order by orderdate ) 
 from business

(5) 查询顾客的购买明细及顾客下次的购买时间

select name,orderdate,cost,lead(orderdate,1,'无数据') over(partition by name order by orderdate ) 
 from business

(4)查询顾客的购买明细及顾客上次的购买时间

select name,orderdate,cost,lag(orderdate,1,'无数据') over(partition by name order by orderdate ) 
 from business

(3)查询顾客的购买明细要将cost按照日期进行累加

select name,orderdate,cost,sum(cost) over(partition by name order by orderdate ) 
 from business

(2)查询顾客的购买明细及月购买总额

select name,orderdate,cost,sum(cost) over(partition by name,substring(orderdate,1,7) ) 
 from business

(1)查询在2017年4月份购买过的顾客及总人数

select name,count(*) over(rows between UNBOUNDED  PRECEDING and UNBOUNDED  FOLLOWING)
from business
where substring(orderdate,1,7)='2017-04'
group by name

等价于

select name,count(*) over()
from business
where substring(orderdate,1,7)='2017-04'
group by name
相关文章
相关标签/搜索