必要:tensorflow,Keraspython
首次运行须要安装:git
1)下载模型权重 inception_v3_weights_tf_dim_ordering_tf_kernels.h5 github
路径见前一篇app
2)安装h5pyide
pip install h5pycode
3)安装PILorm
遇到pip没法安装,以pillow替代,见Stack Overflowblog
ImageNet的1000种object,对应模型分类结果的1000 classes:ip
https://github.com/cjyanyi/keras_deep_learning_tutorial/blob/master/imagenet1000_clsid_to_human.txtget
import numpy as np from keras.preprocessing import image from keras.applications import inception_v3 img = image.load_img("xxx.jpg", target_size=(299, 299)) input_image = image.img_to_array(img) input_image /= 255. input_image -= 0.5 input_image *= 2. # Add a 4th dimension for batch size (Keras) input_image = np.expand_dims(input_image, axis=0) # Run the image through the NN predictions = model.predict(input_image) # Convert the predictions into text predicted_classes = inception_v3.decode_predictions(predictions, top=1) imagenet_id, name, confidence = predicted_classes[0][0] print("This is a {} with {:-4}% confidence!".format(name, confidence * 100))
input_image 是一个默认大小:1*299*299*3 的4维向量(列表)