飞桨工程师亲授调参技巧,可使MobileNetv3-YOLOv3模型压缩70%,推理速度提升1倍

随着端侧算力日益增长,以及模型小型化方案日趋成熟,使得高精度的深度学习模型在移动端、嵌入式等终端设备上流畅运行成为可能。然而将深度学习融合到终端设备上依旧面临平衡复杂神经网络结构的精度和设备性能约束的挑战,往往需要模型开发者在深入理解模型结构的基础上,各种调参并进行细致全面的优化才能达到理想的效果。 近期PaddleDetection推出了一系列针对端侧设备的紧致高效模型,覆盖单阶段及两阶段等主流
相关文章
相关标签/搜索