语法糖(Syntactic Sugar)的出现是为了下降咱们编写某些代码时陷入的重复或繁琐,这使得咱们使用语法糖后能够写出简明而优雅的代码。在Java中不加工的语法糖代码运行时可不会被虚拟机接受,所以编译器为了让这些含有语法糖的代码正常工做其实须要对这些代码进行加工,通过编译器在生成class字节码的阶段完成解语法糖(desugar)的过程,那么这些语法糖最终究竟被编译成了什么呢,在这里列举了以下的一些Java典型的语法糖,结合实例和它们的编译结果分析一下。本文为该系列的第一篇。java
java的泛型其实是伪泛型,在编译后编译器会擦除泛型对象的参数化类型,也就是说源代码中的<T>类型
其实都会擦除,最终成为class字节码中的Object类型
,赋值等操做也就会直接转换为强制的类型转换,这样作无风险的缘由是在编译的标注检查阶段其实已经进行了泛型的检查,若是当时没法经过检查的话编译没法经过。数组
另外,这个泛型信息不是真的就此丢掉了,class字节码中仍是会保留Signature
属性来记录泛型对象在源码中的参数化类型。app
代码:this
public class Main { public static void main(String[] args) { List<String> strList = new ArrayList<>(); strList.add("aaa"); String strEle = strList.get(0); } }
main方法在javap编译后的字节码翻译
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=3, args_size=1 0: new #2 // class java/util/ArrayList 3: dup 4: invokespecial #3 // Method java/util/ArrayList."<init>":()V 7: astore_1 8: aload_1 9: ldc #4 // String aaa 11: invokeinterface #5, 2 // InterfaceMethod java/util/List.add:(Ljava/lang/Object;)Z 16: pop 17: aload_1 18: iconst_0 19: invokeinterface #6, 2 // InterfaceMethod java/util/List.get:(I)Ljava/lang/Object; 24: checkcast #7 // class java/lang/String 27: astore_2 28: return
上面咱们演示了一个参数化类型为String
的List
的泛型对象strList
的add
和get
操做:code
add
操做:对应字节码中的8~16个字节:咱们能够看到最关键的add操做其实就是对象
invokeinterface #5, 2 // InterfaceMethod java/util/List.add:(Ljava/lang/Object;)Z
调用的实际上是java/util/List
类的add
方法,此方法的入参类型是Ljava/lang/Object;
,返回值类型是Z
,翻译过来就是List类的boolean add(Object o)
方法,这里并无参数化类型String
的什么事情。ip
get
操做:对应字节码中的17~27个字节:咱们能够看到最关键的get操做其实就是ci
invokeinterface #6, 2 // InterfaceMethod java/util/List.get:(I)Ljava/lang/Object; checkcast #7 // class java/lang/String
调用的实际上是java/util/List
类的get
方法,此方法的入参类型是I
,返回值类型是Ljava/lang/Object;
,翻译过来就是List类的Object get(int i)
方法,执行完后将得到的结果作了checkcast
,检查返回的对象类型是不是String
。get
从上面的分析咱们不难看出,Java泛型到了编译出结果的时候参数化类型已经没有什么做用了,就是简单作了强制的类型转换。这段去掉了语法糖的代码以下:
public class Main { public static void main(String[] args) { List strList = new ArrayList(); strList.add((Object)"aaa"); String strEle = (String) strList.get(0); } }
Java的泛型是伪泛型的缘由如上,在运行时这个代码彻底体会不到不一样参数化类型的List有什么不一样。而泛型参数化类型的用武之地更多的是在编译时用来作检验类型使用的,正常状况下若是编译时经过检验固然就不会在运行期类型强制转换的时候出现异常,更况且其实字节码中还有checkcast
的显式类型检查。
若是使用javac
的-g:vars
参数来保留class字节码中方法的局部变量信息,那么咱们能够看到额外的信息:
LocalVariableTable: Start Length Slot Name Signature 0 29 0 args [Ljava/lang/String; 8 21 1 strList Ljava/util/List; 28 1 2 strEle Ljava/lang/String; LocalVariableTypeTable: Start Length Slot Name Signature 8 21 1 strList Ljava/util/List<Ljava/lang/String;>;
其中的LocalVariableTypeTable
属性记录了strList
的擦除泛型前的类型:Ljava/util/List<Ljava/lang/String;>;
,翻译过来其实就是List<String>
,若是在反射中获取泛型变量的类型元信息,其来源其实就是这个Signature。这也算是Java为了弥补因类型擦除而致使的class字节码中的类型数据缺失而作出的额外努力吧。
变长参数会被编译成为数组类型的参数,变长参数只能出如今参数列表的结尾以消除歧义。
代码:
public class Main { public static void method(String... args) { } }
method方法在编译后:
public static void method(java.lang.String...); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC, ACC_VARARGS Code: stack=0, locals=1, args_size=1 0: return
咱们能够清楚地看到方法的特征符是([Ljava/lang/String;)V
,即参数是[Ljava/lang/String;
,翻译过来就是String[]
,即数组类型。
这段去掉了语法糖的代码以下:
public class Main { public static void method(String[] args) { } }
编译后装箱经过valueOf()变成了对象,拆箱经过xxxValue()变成了原始类型值。
代码:
public class Main { public static void main(String[] args) { Integer x = 1; int y = x; } }
main方法编译后:
descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=1, locals=3, args_size=1 0: iconst_1 1: invokestatic #2 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer; 4: astore_1 5: aload_1 6: invokevirtual #3 // Method java/lang/Integer.intValue:()I 9: istore_2 10: return
这里咱们能够明显看到Integer x = 1;
编译时x
转换成了java/lang/Integer.valueOf
生成的引用类型Integer
变量,而int y = x;
编译时y
转换成了java/lang/Integer.intValue
生成的原始类型int
变量。
去掉了语法糖的代码以下:
public class Main { public static void main(String[] args) { Integer x = Integer.valueOf(1); int y = x.intValue(); } }
编译后变成了迭代器遍历。
代码:
public class Main { public static void main(String[] args) { List<String> strList = new ArrayList<>(); for (String str : strList) { System.out.println(str); } } }
main方法编译后:
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=4, args_size=1 0: new #2 // class java/util/ArrayList 3: dup 4: invokespecial #3 // Method java/util/ArrayList."<init>":()V 7: astore_1 8: aload_1 9: invokeinterface #4, 1 // InterfaceMethod java/util/List.iterator:()Ljava/util/Iterator; 14: astore_2 15: aload_2 16: invokeinterface #5, 1 // InterfaceMethod java/util/Iterator.hasNext:()Z 21: ifeq 44 24: aload_2 25: invokeinterface #6, 1 // InterfaceMethod java/util/Iterator.next:()Ljava/lang/Object; 30: checkcast #7 // class java/lang/String 33: astore_3 34: getstatic #8 // Field java/lang/System.out:Ljava/io/PrintStream; 37: aload_3 38: invokevirtual #9 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 41: goto 15 44: return StackMapTable: number_of_entries = 2 frame_type = 253 /* append */ offset_delta = 15 locals = [ class java/util/List, class java/util/Iterator ] frame_type = 250 /* chop */ offset_delta = 28
从上面咱们能够看到遍历循环的语法糖被替换成了List.iterator
的循环操做,用下面的代码便可表达这段编译后的去掉语法糖的代码:
public class Main { public static void main(String[] args) { List<String> strList = new ArrayList<>(); Iterator strIterator = strList.iterator(); while(strIterator.hasNext()){ System.out.println((String) strIterator.next()); } } }
编译后将常量不可达条件分支直接在编译结果中消除掉。
代码:
public class Main { public static void main(String[] args) { if (true) { System.out.println("Yes"); } else { System.out.println("No"); } } }
main方法编译后:
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=1, args_size=1 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 3: ldc #3 // String Yes 5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 8: return LocalVariableTable: Start Length Slot Name Signature 0 9 0 args [Ljava/lang/String; }
从上面咱们能够看到常量不可达条件直接就在编译结果中略去了,仿佛就没有这个分支同样,用下面的代码便可表达这段编译后的去掉语法糖的代码:
public class Main { public static void main(String[] args) { System.out.println("Yes"); } }
须要注意的是这里强调的是常量不可达条件才会略去,好比直接就是true的分支或者1==1
这样的分支是会保留的,若是是变量通过运算后才被肯定为不可达是不会发生这种条件编译的,好比:
public class Main { public static void main(String[] args) { int i = 1; if (i==1) { System.out.println("Yes"); } else { System.out.println("No"); } } }
编译后仍是会走ifelse
判断:
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=2, args_size=1 0: iconst_1 1: istore_1 2: iload_1 3: iconst_1 4: if_icmpne 18 7: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 10: ldc #3 // String Yes 12: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 15: goto 26 18: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 21: ldc #5 // String No 23: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 26: return LocalVariableTable: Start Length Slot Name Signature 0 27 0 args [Ljava/lang/String; 2 25 1 i I StackMapTable: number_of_entries = 2 frame_type = 252 /* append */ offset_delta = 18 locals = [ int ] frame_type = 7 /* same */ }
内部类便是类中类,咱们来看这个简单的例子:
代码:
public class Main { class Person{ String name; Integer age; public Person(String name, Integer age) { this.name = name; this.age = age; } } public void demo(String[] args) { Person person = new Person("ccc", 20); } }
来看看编译后的结果,编译后会将内部类Person
单独拿出来作编译,不过语法糖褪去后编译器作了一些处理,好比为Person
类加了与外部的Main
类相联系的字段this$0
:
... class top.jinhaoplus.Main$Person ... { java.lang.String name; descriptor: Ljava/lang/String; flags: java.lang.Integer age; descriptor: Ljava/lang/Integer; flags: final top.jinhaoplus.Main this$0; descriptor: Ltop/jinhaoplus/Main; flags: ACC_FINAL, ACC_SYNTHETIC public top.jinhaoplus.Main$Person(top.jinhaoplus.Main, java.lang.String, java.lang.Integer); descriptor: (Ltop/jinhaoplus/Main;Ljava/lang/String;Ljava/lang/Integer;)V flags: ACC_PUBLIC Code: stack=2, locals=4, args_size=4 0: aload_0 1: aload_1 2: putfield #1 // Field this$0:Ltop/jinhaoplus/Main; 5: aload_0 6: invokespecial #2 // Method java/lang/Object."<init>":()V 9: aload_0 10: aload_2 11: putfield #3 // Field name:Ljava/lang/String; 14: aload_0 15: aload_3 16: putfield #4 // Field age:Ljava/lang/Integer; 19: return LocalVariableTable: Start Length Slot Name Signature 0 20 0 this Ltop/jinhaoplus/Main$Person; 0 20 1 this$0 Ltop/jinhaoplus/Main; 0 20 2 name Ljava/lang/String; 0 20 3 age Ljava/lang/Integer; }
这里翻译过来相似这样的:
class Person { String name; Integer age; final Main this$0; public Person(final Main this$0, String name, Integer age) { this.this$0 = this$0; this.name = name; this.age = age; } } public class Main { public void demo(String[] args) { Person person = new Person(this, "ccc", 20); } }
至于为何须要这个多余的外部类的字段呢,实际上是为了经过它来获取外部类中的信息,咱们对例子加以改造,添加两个外部类的字段secret1
和secret2
:
public class Main { private String secret1; private String secret2; class Person{ String name; Integer age; public Person(String name, Integer age) { this.name = name; this.age = age; } public void getSecrets(){ System.out.println(secret1); System.out.println(secret2); } } public void demo(String[] args) { Person person = new Person("ccc", 20); person.getSecrets(); } }
这个时候编译的结果是Main
为了对外提供本身属性的值自动添加了静态方法access$000(Main)
和access$100(Main)
:
static java.lang.String access$000(top.jinhaoplus.Main); descriptor: (Ltop/jinhaoplus/Main;)Ljava/lang/String; flags: ACC_STATIC, ACC_SYNTHETIC Code: stack=1, locals=1, args_size=1 0: aload_0 1: getfield #2 // Field secret1:Ljava/lang/String; 4: areturn LocalVariableTable: Start Length Slot Name Signature 0 5 0 x0 Ltop/jinhaoplus/Main; static java.lang.String access$100(top.jinhaoplus.Main); descriptor: (Ltop/jinhaoplus/Main;)Ljava/lang/String; flags: ACC_STATIC, ACC_SYNTHETIC Code: stack=1, locals=1, args_size=1 0: aload_0 1: getfield #1 // Field secret2:Ljava/lang/String; 4: areturn LocalVariableTable: Start Length Slot Name Signature 0 5 0 x0 Ltop/jinhaoplus/Main; }
而内部类编译后的结果在获取外部类的属性的时候其实就是调用暴露出的这些方法:
public void getSecret(); descriptor: ()V flags: ACC_PUBLIC Code: stack=2, locals=1, args_size=1 0: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 3: aload_0 4: getfield #1 // Field this$0:Ltop/jinhaoplus/Main; 7: invokestatic #6 // Method top/jinhaoplus/Main.access$000:(Ltop/jinhaoplus/Main;)Ljava/lang/String; 10: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 13: getstatic #5 // Field java/lang/System.out:Ljava/io/PrintStream; 16: aload_0 17: getfield #1 // Field this$0:Ltop/jinhaoplus/Main; 20: invokestatic #8 // Method top/jinhaoplus/Main.access$100:(Ltop/jinhaoplus/Main;)Ljava/lang/String; 23: invokevirtual #7 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 26: return LocalVariableTable: Start Length Slot Name Signature 0 27 0 this Ltop/jinhaoplus/Main$Person; }
翻译过来其实就是这样子的:
class Person { String name; Integer age; final Main this$0; public Person(final Main this$0, String name, Integer age) { this.this$0 = this$0; this.name = name; this.age = age; } public void getSecrets(){ System.out.println(Main.access$000(this$0)); System.out.println(Main.access$100(this$0)); } } public class Main { private String secret1; private String secret2; public void demo(String[] args) { Person person = new Person(this, "ccc", 20); } public static String access$000(Main main) { return main.secret1; } public static String access$100(Main main) { return main.secret2; } }