24分钟让AI跑起飞车类游戏

做者:WeTest小编
html

商业转载请联系腾讯WeTest得到受权,非商业转载请注明出处。git

原文连接:wetest.qq.com/lab/view/44…github



WeTest 导读

本文主要介绍如何让AI在24分钟内学会玩飞车类游戏。咱们使用Distributed PPO训练AI,在短期内能够取得不错的训练效果。算法


本方法的特色:网络

1. 纯游戏图像做为输入框架

2. 不使用游戏内部接口分布式

3. 可靠的强化学习方法函数

4. 简单易行的并行训练学习

1. PPO简介

PPO(Proximal Policy Optimization)是OpenAI在2016年NIPS上提出的一个基于Actor-Critic框架的强化学习方法。该方法主要的创新点是在更新Actor时借鉴了TRPO,确保在每次优化策略时,在一个可信任的范围内进行,从而保证策略能够单调改进。在2017年,DeepMind提出了Distributed PPO,将PPO进行相似于A3C的分布式部署,提升了训练速度。以后,OpenAI又优化了PPO中的代理损失函数,提升了PPO的训练效果。测试


本文不介绍PPO的算法细节,想学习的同窗能够参考如下三篇论文:

【1】Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization[C]//International Conference on Machine Learning. 2015: 1889-1897.

【2】Heess N, Sriram S, Lemmon J, et al. Emergence of locomotion behaviours in rich environments[J]. arXiv preprint arXiv:1707.02286, 2017.

【3】Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.

2. 图像识别

2.1 游戏状态识别

游戏状态识别是识别每一局游戏关卡的开始状态和结束状态。在飞车类游戏中,开始状态和结束状态的标志如图1所示。由于红色框中的标志位置都固定,所以咱们使用模板匹配的方法来识别这些游戏状态。



图1 游戏状态标志


从开始状态到结束状态之间的图像是游戏关卡内的图像,此时进行强化学习的训练过程。当识别到结束状态后,暂停训练过程。结束状态以后的图像都是UI图像,咱们使用UI自动化的方案,识别不一样的UI,点击相应的按钮再次进入游戏关卡,开始下一轮的训练过程,如图2所示。



图2 游戏流程

2.3 游戏图像识别

咱们对游戏关卡中的图像识别了速度的数值,做为强化学习中计算激励(Reward)的依据,如图3所示。速度识别包括三个步骤:

第一步,图像分割,将每一位数字从识别区域中分割出来。

第二步,数字识别,用卷积神经网络或者模板匹配识别每一位图像中的数字类别。

第三步,数字拼接,根据图像分割的位置,将识别的数字拼接起来。



图3 图像各个区域示意图



3. AI设计

3.1 网络结构

咱们使用的网络结构如图4所示。输入为游戏图像中小地图的图像,Actor输出当前时刻须要执行的动做,Critic输出当前时刻运行状态的评价。AlexNet使用从输入层到全链接层以前的结构,包含5个卷积层和3个池化层。Actor和Critic都有两个全链接层,神经元数量分别为1024和512。Actor输出层使用softmax激活函数,有三个神经元,输出动做策略。Critic输出层不使用激活函数,只有一个神经元,输出评价数值。



图4 网络结构示意图


3.2 输入处理

咱们将小地图图像的尺寸变为121X121,输入到AlexNet网络后,在第三个池化层能够得到2304维的特征向量(576*2*2=2304)。将这个特征向量做为Actor和Critic的输入。咱们使用在ImageNet上训练后的AlexNet提取图像特征,而且在强化学习的过程当中没有更新AlexNet的网络参数。

3.3 动做设计

咱们目前在设计飞车类游戏动做时,使用离散的动做,包括三种动做:左转、右转和NO Action。每种动做的持续时间为80ms,即模拟触屏的点击时间为80ms。这样的动做设计方式比较简单,便于AI快速地训练出效果。若是将动做修改成连续的动做,就能够将漂移添加到动做中,让AI学习左转、右转、漂移和NO Action的执行时刻和执行时长。

3.4 激励计算

若是将游戏的胜负做为激励来训练AI,势必会花费至关长的时间。在本文中,咱们根据游戏图像中的速度数值,计算当前时刻的激励。假定当前时刻的速度为Vp,前一时刻的速度为Vq,那么激励R按照如下方式计算:

If Vp ≥ Vq , R = 0.25X(Vp - Vq)

If Vp < Vq , R = -0.25X(Vq - Vp)

If Vp > 250 , R = R + 5.0

If Vp < 50 , R = R - 5.0

这样的激励计算方式可使AI减小撞墙的几率,而且鼓励AI寻找加速点。


4. 训练环境

4.1 硬件

咱们搭建了一个简单的分布式强化学习环境,能够提升采样效率和训练速度,硬件部署方式如图5所示。


图5 硬件部署方式


主要包含如下硬件:

1)3部相同分辨率的手机,用于生成数据和执行动做。

2)2台带有显卡的电脑,一台电脑Proxy用于收集数据、图像识别以及特征提取,另外一台电脑Server用于训练AI。

3)1个交换机,链接两台电脑,用于交换数据。


4.2 软件

Ubuntu 14.04 + TensorFlow 1.2 + Cuda 7.0

5. 分布式部署

咱们使用的分布式部署方式如图6所示。



图6 分布式部署方式


在Proxy端设置三个proxy进程,分别与三部手机相链接。

在Server端设置一个master进程和三个worker线程。master进程和三个worker线程经过内存交换网络参数。master进程主要用于保存最新的网络参数。三个proxy进程分别和三个worker线程经过交换机传输数据。


proxy进程有6个功能:

1)从手机接收图像数据;

2)识别当前游戏状态;

3)识别速度计算激励;

4)利用AlexNet提取图像特征;

5)发送图像特征和激励到worker线程,等待worker线程返回动做;

6)发送动做到手机;


worker线程有5个功能:

1)从proxy进程接收图像特征和激励;

2)从master进程拷贝最新的网络参数;

3)将Actor输出的动做发送到proxy进程;

4)利用PPO更新网络参数;

5)将更新后的网络参数传输到master进程;

6. 实验

6.1 参数设置

PPO的训练参数不少,这里介绍几个重要参数的设置:

1)学习速率:Actor和Critic的学习率都设置为1e-5

2)优化器:Adam优化器

3)Batch Size: 20

4)采样帧率:10帧/秒

5)更新次数:15次

6)激励折扣率:0.9

6.2 AI效果


6.3 数据分析

表1和表2分别对比了不一样并行数量和不一样输入数据状况下AI跑完赛道和取得名次的训练数据。最快的训练过程是在并行数量为3和输入数据为小地图的状况下,利用PPO训练24分钟就可让AI跑完赛道,训练7.5小时就可让AI取得第一名(和内置AI比赛)。而且在减小一部手机采样的状况下,也能够达到相同的训练效果,只是训练过程耗时更长一点。另外,若是将输入数据从小地图换成全图,AI的训练难度会有必定程度的增长,不必定能达到相同的训练效果。


表1 AI跑完赛道的数据对比

输入数据

并行数量

训练时间

训练次数

训练局数

全图

2

100分钟

4200次

78局

小地图

2

40分钟

1700次

32局

全图

3

78分钟

3900次

72局

小地图

3

24分钟

1400次

25局

表2 AI取得名次的数据对比

输入数据

并行数量

训练时间

训练次数

训练局数

名次

小地图

2

9小时

19000次

354局

1

全图

3

60小时

98000次

1800局

4-6

小地图

3

7.5小时

17800次

343局

1

如7展现了利用PPO训练AI过程当中激励的趋势图,曲线上每个点表示一局累计的总激励。训练开始时,AI常常撞墙,总激励为负值。随着训练次数的增长,总激励快速增加,AI撞墙的概率很快下降。当训练到1400屡次时,总激励值超过400,此时AI恰好能够跑完赛道。以后的训练过程,总激励的趋势是缓慢增加,AI开始寻找更好的动做策略。



图7 AI训练过程当中激励的趋势图



7. 总结

本文介绍了如何使用Distributed PPO在24分钟内让AI玩飞车类游戏。当前的方法有必定训练效果,可是也存在不少不足。


目前,咱们想到如下几个改进点,之后会逐一验证:

1)将AlexNet替换为其余卷积神经网络,如VGG、Inception-V3等等,提升特征提取的表达能力。

2)提升并行数量,添加更多手机和电脑,提升采样速度和计算速度。

3)增长Batch Size,使用较长的时间序列数据训练AI。

4)将离散动做替换为连续动做,增长漂移的学习。

5)多个关卡同时训练,提升AI的泛化能力。

参考文献:

【1】Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization[C]//International Conference on Machine Learning. 2015: 1889-1897.

【2】Heess N, Sriram S, Lemmon J, et al. Emergence of locomotion behaviours in rich environments[J]. arXiv preprint arXiv:1707.02286, 2017.

【3】Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.

【4】https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/6-4-DPPO/


“深度兼容测试”现已对外,腾讯专家为您定制自动化测试脚本,覆盖应用核心场景,对上百款主流机型进行适配兼容测试,提供详细测试报告,而且首度使用AI能力助力测试


点击wetest.qq.com/cloud/deepc… 便可体验。


若是使用当中有任何疑问,欢迎联系腾讯WeTest企业QQ:2852350015

相关文章
相关标签/搜索