机器学习系列25:随机梯度下降算法

如今机器学习的数据集动则几千万或上亿,如果运用我们之前学过的 Batch 梯度下降算法,就会发现效率很低,因为在梯度下降时,每次循环都要对所有的数据进行求和,这会浪费大量的时间。有没有更好的方法去处理大数据呢?答案是有的。我们在处理大数据时,会选择随机梯度下降算法(Stochastic gradient descent)。   下面是随机梯度下降算法的代价函数: 之后是随机梯度下降算法: 首先需要
相关文章
相关标签/搜索