大数据下的Distinct Count(一):序

大数据(big data),IT行业术语,是指没法在必定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是须要新处理模式才能具备更强的决策力、洞察发现力和流程优化能力的海量、高增加率和多样化的信息资产。

大数据下的Distinct Count(一):序大数据下的Distinct Count(一):序

Hive

在大数据场景下,报表很重要一项是UV(Unique Visitor)统计,即某时间段内用户人数。例如,查看一周内app的用户分布状况,Hive中写HiveQL实现:html

select app, count(distinct uid) as uv
from log_table
where week_cal = '2016-03-27'
Pig

与之相似,Pig的写法:linux

-- all users
define DISTINCT_COUNT(A, a) returns dist {
    B = foreach $A generate $a;
    unique_B = distinct B;
    C = group unique_B all;
    $dist = foreach C generate SIZE(unique_B);
}
A = load '/path/to/data' using PigStorage() as (app, uid);
B = DISTINCT_COUNT(A, uid);

-- 
A = load '/path/to/data' using PigStorage() as (app, uid);
B = distinct A;
C = group B by app;
D = foreach C generate group as app, COUNT($1) as uv;
-- suitable for small cardinality scenarios
D = foreach C generate group as app, SIZE($1) as uv;

DataFu 为pig提供基数估计的UDF datafu.pig.stats.HyperLogLogPlusPlus,其采用HyperLogLog++算法,更为快速地Distinct Count:ios

define HyperLogLogPlusPlus datafu.pig.stats.HyperLogLogPlusPlus();
A = load '/path/to/data' using PigStorage() as (app, uid);
B = group A by app;
C = foreach B generate group as app, HyperLogLogPlusPlus($1) as uv;
Spark

在Spark中,Load数据后经过RDD一系列的转换——map、distinct、reduceByKey进行Distinct Count:算法

rdd.map { row => (row.app, row.uid) }
  .distinct()
  .map { line => (line._1, 1) }
  .reduceByKey(_ + _)

// or
rdd.map { row => (row.app, row.uid) }
  .distinct()
  .mapValues{ _ => 1 }
  .reduceByKey(_ + _)

// or 
rdd.map { row => (row.app, row.uid) }
  .distinct()
  .map(_._1)
  .countByValue()

同时,Spark提供近似Distinct Count的API:sql

rdd.map { row => (row.app, row.uid) }
    .countApproxDistinctByKey(0.001)

实现是基于HyperLogLog算法:app

The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.

或者,将Schema化的RDD转成DataFrame后,registerTempTable而后执行sql命令亦可:工具

val sqlContext = new SQLContext(sc)
val df = rdd.toDF()
df.registerTempTable("app_table")

val appUsers = sqlContext.sql("select app, count(distinct uid) as uv from app_table group by app")

本文地址:https://www.linuxprobe.com/big-data-sequence.html大数据

相关文章
相关标签/搜索