Wasserstein Generative Adversarial Nets (WGAN ) and CGAN

GAN目前是机器学习中非常受欢迎的研究方向。主要包括有两种类型的研究,一种是将GAN用于有趣的问题,另一种是试图增加GAN的模型稳定性。 事实上,稳定性在GAN训练中是非常重要的。起初的GAN模型在训练中存在一些问题,e.g., 模式塌陷(生成器演化成非常窄的分布,只覆盖数据分布中的单一模式)。模式塌陷的含义是发生器只能产生非常相似的样本(例如MNIST中的单个数字),即所产生的样本不是多样的。这
相关文章
相关标签/搜索