VGGNET的思想就是加深神经网络层次,多使用3*3的卷积核替换5*5的python
这里咱们就不使用1*1的卷积核了git
咱们能够在以前的卷积神经网络基础上复用数据处理和测试的代码bash
只修改卷积层部分网络
# conv1:神经元图,feature map,输出图像
conv1_1 = tf.layers.conv2d(x_image,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明输出图像的大小没有变化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv1_1'
)
conv1_2 = tf.layers.conv2d(conv1_1,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明输出图像的大小没有变化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv1_2'
)
# 16*16
pooling1 = tf.layers.max_pooling2d(conv1_2,
(2, 2), # kernal size
(2, 2), # stride
name = 'pool1' # name为了给这一层作一个命名,这样会让图打印出来的时候会是一个有意义的图
)
conv2_1 = tf.layers.conv2d(pooling1,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明输出图像的大小没有变化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv2_1'
)
conv2_2 = tf.layers.conv2d(conv2_1,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明输出图像的大小没有变化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv2_2'
)
# 8*8
pooling2 = tf.layers.max_pooling2d(conv2_2,
(2, 2), # kernal size
(2, 2), # stride
name = 'pool2' # name为了给这一层作一个命名,这样会让图打印出来的时候会是一个有意义的图
)
conv3_1 = tf.layers.conv2d(pooling2,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明输出图像的大小没有变化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv3_1'
)
conv3_2 = tf.layers.conv2d(conv3_1,
32, # output channel number
(3,3), # kernal size
padding = 'same', # same 表明输出图像的大小没有变化,valid 表明不作padding
activation = tf.nn.relu,
name = 'conv3_2'
)
# 4*4*32
pooling3 = tf.layers.max_pooling2d(conv3_2,
(2, 2), # kernal size
(2, 2), # stride
name = 'pool3' # name为了给这一层作一个命名,这样会让图打印出来的时候会是一个有意义的图
)
复制代码
训练10000次 能够达到百分之70的准确率app
[Train] Step: 500, loss: 1.92473, acc: 0.45000
[Train] Step: 1000, loss: 1.49288, acc: 0.35000
[Train] Step: 1500, loss: 1.30839, acc: 0.55000
[Train] Step: 2000, loss: 1.41633, acc: 0.40000
[Train] Step: 2500, loss: 1.10951, acc: 0.60000
[Train] Step: 3000, loss: 1.15743, acc: 0.65000
[Train] Step: 3500, loss: 0.93834, acc: 0.70000
[Train] Step: 4000, loss: 0.76699, acc: 0.80000
[Train] Step: 4500, loss: 0.71109, acc: 0.70000
[Train] Step: 5000, loss: 0.75763, acc: 0.75000
(10000, 3072)
(10000,)
[Test ] Step: 5000, acc: 0.67500
[Train] Step: 5500, loss: 0.98661, acc: 0.65000
[Train] Step: 6000, loss: 1.43098, acc: 0.50000
[Train] Step: 6500, loss: 0.86575, acc: 0.70000
[Train] Step: 7000, loss: 0.80474, acc: 0.65000
[Train] Step: 7500, loss: 0.60132, acc: 0.85000
[Train] Step: 8000, loss: 0.66683, acc: 0.80000
[Train] Step: 8500, loss: 0.56874, acc: 0.85000
[Train] Step: 9000, loss: 0.68185, acc: 0.70000
[Train] Step: 9500, loss: 0.83302, acc: 0.70000
[Train] Step: 10000, loss: 0.87228, acc: 0.70000
(10000, 3072)
(10000,)
[Test ] Step: 10000, acc: 0.72700
复制代码
先来回顾一下RESNET的网络结构ide
RESNET是先通过了一个卷积层,又通过了一个池化层,而后再通过若干个残差链接块测试
这里每通过一个残差链接块之后,可能会通过一个降采样的过程优化
所谓降采样就是以前的maxpooling或者卷积层的步长等于2ui
在上面的ResNet中,通过了四次降采样的过程,可是因为咱们的实战使用的图片是32*32的自己就比较小,因此不会通过太多的降采样,也不会首先通过maxpooling层spa
在降采样的过程当中可能会出现的一个问题是:残差有两部分组成,一部分是卷积操做,一部分是恒等变换,若是卷及操做降采样了,那么会致使两部分的维度不同,这时候的矩阵加法会出问题。因此这个时候须要额外进行一个操做,就是若是卷积作了降采样,那么恒等变化也要作一次降采样,这个操做使用maxpooling来作。
先定义残差块的实现方法
""" x是输入数据,output_channel 是输出通道数 为了不降采样带来的数据损失,咱们会在降采样的时候讲output_channel翻倍 因此这里若是output_channel是input_channel的二倍,则说明须要降采样 """
def residual_block(x, output_channel):
"""residual connection implementation"""
input_channel = x.get_shape().as_list()[-1]
if input_channel * 2 == output_channel:
increase_dim = True
strides = (2, 2)
elif input_channel == output_channel:
increase_dim = False
strides = (1, 1)
else:
raise Exception("input channel can't match output channel")
conv1 = tf.layers.conv2d(x,
output_channel,
(3,3),
strides = strides,
padding = 'same',
activation = tf.nn.relu,
name = 'conv1')
conv2 = tf.layers.conv2d(conv1,
output_channel,
(3,3),
strides = (1,1),
padding = 'same',
activation = tf.nn.relu,
name = 'conv2')
# 处理另外一个分支(恒等变换)
if increase_dim:
# 须要降采样
# [None,image_width,image_height,channel] -> [,,,channel*2]
pooled_x = tf.layers.average_pooling2d(x,
(2,2), # pooling 核
(2,2), # strides strides = pooling 不重叠
padding = 'valid' # 这里图像大小是32*32,都能除尽,padding是什么没有关系
)
# average_pooling2d使得图的大小变化了,可是output_channel仍是不匹配,下面修改output_channel
padded_x = tf.pad(pooled_x,
[[0,0],
[0,0],
[0,0],
[input_channel // 2,input_channel //2]])
else:
padded_x = x
output_x = conv2 + padded_x
return output_x
复制代码
而后定义残差网络
先使用一个卷积层,而后循环建立残差块,最后跟一个全局的池化,而后是全链接到输出
全局的池化和普通的池化同样,只不过他的size和图像的width,height同样大,这样一个图像的输出就是一个数
def res_net(x,
num_residual_blocks,
num_filter_base,
class_num):
"""residual network implementation"""
""" Args: - x: 输入数据 - num_residual_blocks: 残差连接块数 eg: [3,4,6,3] - num_filter_base: 最初的通道数目 - class_num: 类别数目 """
# 须要作多少次降采样
num_subsampling = len(num_residual_blocks)
layers = []
# [None,image_width,image_height,channel] -> [image_width,image_height,channel]
# kernal size:image_width,image_height
input_size = x.get_shape().as_list()[1:]
with tf.variable_scope('conv0'):
conv0 = tf.layers.conv2d(x,
num_filter_base,
(3,3),
strides = (1,1),
activation = tf.nn.relu,
padding = 'same',
name = 'conv0')
layers.append(conv0)
# eg: num_subsampling = 4 ,sample_id = [1,2,3,4]
for sample_id in range(num_subsampling):
for i in range(num_residual_blocks[sample_id]):
with tf.variable_scope("conv%d_%d" % (sample_id, i)):
conv = residual_block(
layers[-1],
num_filter_base * (2 ** sample_id)) # 每次翻倍
layers.append(conv)
multiplier = 2 ** (num_subsampling - 1)
assert layers[-1].get_shape().as_list()[1:] \
== [input_size[0] / multiplier,
input_size[1] / multiplier,
num_filter_base * multiplier]
with tf.variable_scope('fc'):
# layers[-1].shape : [None, width, height, channel]
global_pool = tf.reduce_mean(layers[-1], [1, 2]) # pooling
logits = tf.layers.dense(global_pool, class_num) # 全链接
layers.append(logits)
return layers[-1]
复制代码
而后使用残差网络
x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# 将向量变成具备三通道的图片的格式
x_image = tf.reshape(x, [-1,3,32,32])
# 32*32
x_image = tf.transpose(x_image, perm = [0, 2, 3, 1])
y_ = res_net(x_image, [2,3,2], 32, 10)
# 交叉熵
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_-> softmax
# y -> one_hot
# loss = ylogy_
# bool
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
with tf.name_scope('train_op'):
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
复制代码
这里训练的结构过7000次百分之67.之因此比VGG低,是由于不少优化没有用。优化后的残差网络在cifar10上能够达到94%的准确率