本文源自RQ做者的一篇博文,原文是Iterables vs. Iterators vs. Generators,俺写的这篇文章是按照本身的理解作的参考翻译,算不上是原文的中译版本,推荐阅读原文。python
在了解Python的数据结构时,容器(container)、可迭代对象(iterable)、迭代器(iterator)、生成器(generator)、列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一块儿,不免让初学者一头雾水,我将用一篇文章试图将这些概念以及它们之间的关系捋清楚。express
容器是一种把多个元素组织在一块儿的数据结构,容器中的元素能够逐个地迭代获取,能够用in, not in关键字判断元素是否包含在容器中。一般这类数据结构把全部的元素存储在内存中(也有一些特例,并非全部的元素都放在内存,好比迭代器和生成器对象)在Python中,常见的容器对象有:编程
容器比较容易理解,由于你就能够把它看做是一个盒子、一栋房子、一个柜子,里面能够塞任何东西。从技术角度来讲,当它能够用来询问某个元素是否包含在其中时,那么这个对象就能够认为是一个容器,好比 list,set,tuples都是容器对象:数组
>>> assert 1 in [1, 2, 3] # lists
>>> assert 4 not in [1, 2, 3]
>>> assert 1 in {1, 2, 3} # sets
>>> assert 4 not in {1, 2, 3}
>>> assert 1 in (1, 2, 3) # tuples
>>> assert 4 not in (1, 2, 3)
询问某元素是否在dict中用dict的中key:数据结构
>>> d = {1: 'foo', 2: 'bar', 3: 'qux'}
>>> assert 1 in d
>>> assert 'foo' not in d # 'foo' 不是dict中的元素
询问某substring是否在string中:app
>>> s = 'foobar'
>>> assert 'b' in s
>>> assert 'x' not in s
>>> assert 'foo' in s
尽管绝大多数容器都提供了某种方式来获取其中的每个元素,但这并非容器自己提供的能力,而是可迭代对象赋予了容器这种能力,固然并非全部的容器都是可迭代的,好比:Bloom filter,虽然Bloom filter能够用来检测某个元素是否包含在容器中,可是并不能从容器中获取其中的每个值,由于Bloom filter压根就没把元素存储在容器中,而是经过一个散列函数映射成一个值保存在数组中。socket
刚才说过,不少容器都是可迭代对象,此外还有更多的对象一样也是可迭代对象,好比处于打开状态的files,sockets等等。但凡是能够返回一个迭代器的对象均可称之为可迭代对象,听起来可能有点困惑,不要紧,先看一个例子:函数
>>> x = [1, 2, 3]
>>> y = iter(x)
>>> z = iter(x)
>>> next(y)
1
>>> next(y)
2
>>> next(z)
1
>>> type(x)
<class 'list'>
>>> type(y)
<class 'list_iterator'>
这里x是一个可迭代对象,可迭代对象和容器同样是一种通俗的叫法,并非指某种具体的数据类型,list是可迭代对象,dict是可迭代对象,set也是可迭代对象。y和z是两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。迭代器有一种具体的迭代器类型,好比list_iterator,set_iterator。可迭代对象实现了__iter__和__next__方法(python2中是next方法,python3是__next__方法),这两个方法对应内置函数iter()和next()。__iter__方法返回可迭代对象自己,这使得他既是一个可迭代对象同时也是一个迭代器。post
当运行代码:优化
x = [1, 2, 3]
for elem in x:
...
实际执行状况是:
反编译该段代码,你能够看到解释器显示地调用GET_ITER指令,至关于调用iter(x),FOR_ITER指令就是调用next()方法,不断地获取迭代器中的下一个元素,可是你无法直接从指令中看出来,由于他被解释器优化过了。
>>> import dis
>>> x = [1, 2, 3]
>>> dis.dis('for _ in x: pass')
1 0 SETUP_LOOP 14 (to 17)
3 LOAD_NAME 0 (x)
6 GET_ITER
>> 7 FOR_ITER 6 (to 16)
10 STORE_NAME 1 (_)
13 JUMP_ABSOLUTE 7
>> 16 POP_BLOCK
>> 17 LOAD_CONST 0 (None)
20 RETURN_VALUE
那么什么迭代器呢?它是一个带状态的对象,他能在你调用next()方法的时候返回容器中的下一个值,任何实现了__next__()(python2中实现next())方法的对象都是迭代器,至于它是如何实现的这并不重要。
因此,迭代器就是实现了工厂模式的对象,它在你每次你询问要下一个值的时候给你返回。有不少关于迭代器的例子,好比itertools函数返回的都是迭代器对象。
生成无限序列:
>>> from itertools import count
>>> counter = count(start=13)
>>> next(counter)
13
>>> next(counter)
14
从一个有限序列中生成无限序列:
>>> from itertools import cycle
>>> colors = cycle(['red', 'white', 'blue'])
>>> next(colors)
'red'
>>> next(colors)
'white'
>>> next(colors)
'blue'
>>> next(colors)
'red'
从无限的序列中生成有限序列:
>>> from itertools import islice
>>> colors = cycle(['red', 'white', 'blue']) # infinite
>>> limited = islice(colors, 0, 4) # finite
>>> for x in limited:
... print(x)
red
white
blue
red
为了更直观地感觉迭代器内部的执行过程,咱们自定义一个迭代器,以斐波那契数列为例:
class Fib:
def __init__(self):
self.prev = 0
self.curr = 1
def __iter__(self):
return self
def __next__(self):
value = self.curr
self.curr += self.prev
self.prev = value
return value
>>> f = Fib()
>>> list(islice(f, 0, 10))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
Fib既是一个可迭代对象(由于它实现了__iter__方法),又是一个迭代器(由于实现了__next__方法)。实例变量prev和curr用户维护迭代器内部的状态。每次调用next()方法的时候作两件事:
迭代器就像一个懒加载的工厂,等到有人须要的时候才给它生成值返回,没调用的时候就处于休眠状态等待下一次调用。
生成器算得上是Python语言中最吸引人的特性之一,生成器实际上是一种特殊的迭代器,不过这种迭代器更加优雅。它不须要再像上面的类同样写__iter__()和__next__()方法了,只须要一个yiled关键字。 生成器必定是迭代器(反之不成立),所以任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:
def fib():
prev, curr = 0, 1
while True:
yield curr
prev, curr = curr, curr + prev
>>> f = fib()
>>> list(islice(f, 0, 10))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
fib就是一个普通的python函数,它特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。
生成器在Python中是一个很是强大的编程结构,能够用更少地中间变量写流式代码,此外,相比其它容器对象它更能节省内存和CPU,固然它能够用更少的代码来实现类似的功能。如今就能够动手重构你的代码了,但凡看到相似:
def something():
result = []
for ... in ...:
result.append(x)
return result
均可以用生成器函数来替换:
def iter_something():
for ... in ...:
yield x
生成器表达式是列表推倒式的生成器版本,看起来像列表推导式,可是它返回的是一个生成器对象而不是列表对象。
>>> a = (x*x for x in range(10))
>>> a
<generator object <genexpr> at 0x401f08>
>>> sum(a)
285
容器是一系列元素的集合,在python中str,list,set,dict,file,sockets均可以看做是容器,容器均可以被迭代,所以他们也称为可迭代对象,可迭代对象实现了__iter__方法,迭代器持有一个内部状态的字段,用于记录下次迭代返回值,它实现了__next__方法,迭代器不会一次性把全部元素加载到内存,而是须要的时候才生成返回结果,生成器是一种特殊的迭代器,它的返回值不是经过return而是用yield。