VGG, resnet和inception是3种典型的卷积神经网络结构。python
简单起见,直接使用了[1]的代码来测试 resnet,而后用[2],[4]的代码替换[1]中的model,改了改通道,测 VGG 和 inception。git
GPU是gtx1050,主板开始是 x79,后来坏了,换成 x470,GPU占比提升不少。
CPU占比始终100%github
超参数:epochs=80,lr=0.001,optim=Adam
数据集:cifar10网络
_ | 参数个数(k) | 训练时间(m) | 精度(%) | GPU内存(M) | GPU占比(%) |
---|---|---|---|---|---|
resnet | 195 | 22 | 88 | 607 | 99 |
vgg_bn | 207 | 17 | 84 | 535 | 60 |
inception | 107 | 19 | 80 | 613 | 98 |
结论:条条道路通罗马。ide
由于方便,注释掉 Batch Normalization,以及 Data Augmentation 又试了两次。测试
_ | 参数个数(k) | 训练时间(m) | 精度(%) | GPU内存(M) | GPU占比(%) |
---|---|---|---|---|---|
resnet | 195 | 22 | 88 | 607 | 99 |
resnet-BN | 195 | 19 | 86 | 553 | 99 |
resnet-DA | 195 | 22 | 64 | 607 | 99 |
结论:Data Augmentation很重要code
class ResNet(nn.Module): def __init__(self, block, layers, num_classes=10): super(ResNet, self).__init__() self.in_channels = 16 self.conv = conv3x3(3, 16) self.bn = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self.make_layer(block, 16, layers[0]) self.layer2 = self.make_layer(block, 32, layers[1], 2) self.layer3 = self.make_layer(block, 64, layers[2], 2) self.avg_pool = nn.AvgPool2d(8) self.fc = nn.Linear(64, num_classes) print('# generator parameters:', sum(param.numel() for param in model.parameters()))
class VGG(nn.Module): def __init__(self, features, num_classes=10, init_weights=True): super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((3, 3)) self.classifier = nn.Sequential( nn.Linear(9 * 8 * 8, 64), nn.ReLU(True), #nn.Dropout(), nn.Linear(64, 64), nn.ReLU(True), #nn.Dropout(), nn.Linear(64, num_classes), ) def vgg_bn(**kwargs): cfg = [16, 16, 'M', 32, 32, 'M', 32, 32, 'M', 64, 64, 'M', 64, 64, 'M'] model = VGG(make_layers(cfg, batch_norm=True), **kwargs)
class Inception_v1(nn.Module): def __init__(self, num_classes=10): super(Inception_v1, self).__init__() #conv2d0 self.conv1 = conv3x3(3, 6) self.max_pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.lrn1 = nn.BatchNorm2d(6) self.inception_3a = Inception_base(1, 6, [[16], [16,32], [8, 16], [3, 16]]) #3a self.inception_3b = Inception_base(1, 80, [[40], [32,48], [12, 16], [3, 16]]) #3b self.max_pool_inc3= nn.MaxPool2d(kernel_size=3, stride=2, padding=0) self.inception_5a = Inception_base(1, 120, [[40], [32,48], [12, 16], [3, 16]]) #5a self.inception_5b = Inception_base(1, 120, [[40], [32,48], [12, 16], [3, 16]]) #5b self.avg_pool5 = nn.AvgPool2d(kernel_size=3, stride=2, padding=0) self.dropout_layer = nn.Dropout(0.4) self.fc = nn.Linear(120*9, num_classes)
[1] https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/deep_residual_network/main.py
[2] https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
[3] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
[4] https://github.com/antspy/inception_v1.pytorch/blob/master/inception_v1.pyorm