如何计算时间复杂度(转)

1、概念
时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
好比:通常总运算次数表达式相似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
eg:
(1)   for(i=1;i<=n;i++)   //循环了n*n次,固然是O(n^2)
            for(j=1;j<=n;j++)
                 s++;
(2)   for(i=1;i<=n;i++)//循环了(n+n-1+n-2+...+1)≈(n^2)/2,由于时间复杂度是不考虑系数的,因此也是O(n^2)
            for(j=i;j<=n;j++)
                 s++;
(3)   for(i=1;i<=n;i++)//循环了(1+2+3+...+n)≈(n^2)/2,固然也是O(n^2)
            for(j=1;j<=i;j++)
                 s++;
(4)   i=1;k=0;
      while(i<=n-1){
           k+=10*i;
i++; }
//循环了
n-1≈n次,因此是O(n)
(5) for(i=1;i<=n;i++)
             for(j=1;j<=i;j++)
                 for(k=1;k<=j;k++)
                       x=x+1;
//
循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,天然是O(n^3)
另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,由于对数换底公式:
 
log(a,b)=log(c,b)/log(c,a)
因此,log(2,n)=log(2,10)*lg(n),忽略掉系数,两者固然是等价的
2、计算方法
1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但咱们不可能也没有必要对每一个算法都上机测试,只需知道哪一个算法花费的时间多,哪一个算法花费的时间少就能够了。而且一个算法花费的时间与算法中语句的执行次数成正比例,哪一个算法中语句执行次数多,它花费时间就多。
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
2.通常状况下,算法的基本操做重复执行的次数是模块n的某一个函数f(n),所以,算法的时间复杂度记作:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增加率和f(n)的增加率成正比,因此f(n)越小,算法的时间复杂度越低,算法的效率越高。
在计算时间复杂度的时候,先找出算法的基本操做,而后根据相应的各语句肯定它的执行次数,再找出T(n)的同数量级(它的同数量级有如下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可获得一常数c,则时间复杂度T(n)=O(f(n))。
3.常见的时间复杂度
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),  对数阶O(log2n),  线性阶O(n),  线性对数阶O(nlog2n),  平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。
其中,
1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
2.O(2^n),指数阶时间复杂度,该种不实用
3.对数阶O(log2n),   线性对数阶O(nlog2n),除了常数阶之外,该种效率最高
例:算法:
  for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操做 执行次数:n^2
          for(k=1;k<=n;++k)
               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操做 执行次数:n^3
     }
  }
  则有 T(n)= n^2+n^3,根据上面括号里的同数量级,咱们能够肯定 n^3为T(n)的同数量级
  则有f(n)= n^3,而后根据T(n)/f(n)求极限可获得常数c
  则该算法的 时间复杂度:T(n)=O(n^3)
4、

 

定义:若是一个问题的规模是n,解这一问题的某一算法所须要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

咱们经常使用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义若是f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并非上确界,但人们在表示的时候通常都习惯表示前者。

此外,一个问题自己也有它的复杂性,若是某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),好比说“二分检索是 O(logn)的”,也就是说它须要“经过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增加。

这种渐进估计对算法的理论分析和大体比较是很是有价值的,但在实践中细节也可能形成差别。例如,一个低附加代价的O(n2)算法在n较小的状况下可能比一个高附加代价的 O(nlogn)算法运行得更快。固然,随着n足够大之后,具备较慢上升函数的算法必然工做得更快。

O(1)

Temp=i;i=j;j=temp;                    

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记做T(n)=O(1)。若是算法的执行时间不随着问题规模n的增长而增加,即便算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.   
    for (i=1;i<n;i++)
    {
        y=y+1;         ①   
        for (j=0;j<=(2*n);j++)    
           x++;        ②      
    }         
解: 语句1的频度是n-1
          语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          该程序的时间复杂度T(n)=O(n^2).         

O(n)      
                                                      
2.3.
    a=0;
    b=1;                      ①
    for (i=1;i<=n;i++) ②
    {  
       s=a+b;    ③
       b=a;     ④  
       a=s;     ⑤
    }
解:语句1的频度:2,        
           语句2的频度: n,        
          语句3的频度: n-1,        
          语句4的频度:n-1,    
          语句5的频度:n-1,                                  
          T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                 
O(log2n )

2.4.
     i=1;       ①
    while (i<=n)
       i=i*2; ②
解: 语句1的频度是1,  
          设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    
          取最大值f(n)= log2n,
          T(n)=O(log2n )

O(n^3)

2.5.
    for(i=0;i<n;i++)
    {  
       for(j=0;j<i;j++)  
       {
          for(k=0;k<j;k++)
             x=x+2;  
       }
    }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 能够取 0,1,...,m-1 , 因此这里最内循环共进行了0+1+...+m-1=(m-1)m/2次因此,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6因此时间复杂度为O(n^3).
                                  

咱们还应该区分算法的最坏状况的行为和指望行为。如快速排序的最 坏状况运行时间是 O(n^2),但指望时间是 O(nlogn)。经过每次都仔细 地选择基准值,咱们有可能把平方状况 (即O(n^2)状况)的几率减少到几乎等于 0。在实际中,精心实现的快速排序通常都能以 (O(nlogn)时间运行。
下面是一些经常使用的记法:


访问数组中的元素是常数时间操做,或说O(1)操做。一个算法如 果能在每一个步骤去掉一半数据元素,如二分检索,一般它就取 O(logn)时间。用strcmp比较两个具备n个字符的串须要O(n)时间。常规的矩阵乘算法是O(n^3),由于算出每一个元素都须要将n对 元素相乘并加到一块儿,全部元素的个数是n^2。
指数时间算法一般来源于须要求出全部可能结果。例如,n个元 素的集合共有2n个子集,因此要求出全部子集的算法将是O(2n)的。指数算法通常说来是太复杂了,除非n的值很是小,由于,在 这个问题中增长一个元素就致使运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。若是咱们真的遇到这种状况,一般应该用寻找近似最佳结果的算法替代之。
 
经常使用排序算法的时间复杂度和空间复杂度表格
相关文章
相关标签/搜索