Spring 源码学习(四) bean 的加载

解析完配置后,来看下 bean 是如何加载的java


前言

既然咱们 Spring 辛辛苦苦将 bean 进行了注册,固然须要拿出来进行使用,在使用以前还须要通过一个步骤,就是 bean 的加载。git

在第一篇笔记提到了,完成 bean 注册到 beanDefinitionMap 注册表后,还调用了不少后处理器的方法,其中有一个方法 finishBeanFactoryInitialization(),注释上面写着 Instantiate all remaining (non-lazy-init) singletons,意味着非延迟加载的类,将在这一步实例化,完成类的加载。github

而咱们使用到 context.getBean("beanName")方法,若是对应的 bean 是非延迟加载的,那么直接就能拿出来进行使用,而延迟加载的 bean 就须要上面的步骤进行类的加载,加载完以后才能进行使用~spring

下面一块儿来看下这两个步骤中, bean 是如何进行加载的。缓存


时序图

咱们的代码分析都是围绕着这个方法,请同窗们提早定位好位置:bash

org.springframework.beans.factory.support.AbstractBeanFactory#doGetBean多线程

这个 bean 加载的代码量是有点多的,已经超过 100 行,因此整理了时序图,但愿能对加载流程有个清晰的概览:并发

这个时序图介绍了 bean 加载的大致流程,还有不少细节没在图中进行展现。咱们先对总体流程有个了解,而后跟着代码一块儿深刻分析吧。mvc


代码分析

再提示一下:因为代码量不少,每次贴大段代码看起来会比较吃力,因此展现的是我认为的关键代码,下载项目看完整注释,跟着源码一块儿分析~app

码云 Gitee 地址

Github 地址


FactoryBean 的使用

在分析加载流程以前,有个前置概念要了解下,在通常状况下,Spring 是经过反射机制利用 beanclass 属性指定实现类来实例化 bean

引用书本:

在某些状况下,实例化 bean 比较复杂,例若有多个参数的状况下,传统方式须要在配置文件中,写不少配置信息,显得不太灵活。在这种状况下,可使用 Spring 提供的 FactoryBean 接口,用户能够经过实现该接口定制实例化 bean 的逻辑。

FactoryBean 接口定义了三个方法:

public interface FactoryBean<T> {
	T getObject() throws Exception;
	Class<?> getObjectType();
	default boolean isSingleton() {
		return true;
	}
}
复制代码

主要讲下用法吧:

当配置文件中的 <bean>class 属性实现类是 FactoryBean 时,经过 getBean() 方法返回的不是 FactoryBean 自己,而是 FactoryBean#getObject() 方法返回的对象。

使用 demo 代码请看下图:

扩展 FactoryBean 以后,须要重载图中的两个方法,经过泛型约定返回的类型。在重载的方法中,进行本身个性化的处理。

在启动类 Demo,经过上下文获取类的方法 context.getBean("beanName"),使用区别是 beanName 是否使用 & 前缀,若是有没有 & 前缀,识别到的是 FactoryBean.getObject 返回的 car 类型,若是带上 & 前缀,那么将会返回 FactoryBean 类型的类。

验证和学习书中的概念,最快的方式是运行一遍示例代码,看输出结果是否符合预期,因此参考书中的例子,本身手打代码,看最后的输出结果,发现与书中说的一致,同时也加深了对 FactoryBean 的了解。


为何要先讲 BeanFactory 这个概念呢?

从时序图看,在 1.5 那个步骤,调用了方法:

org.springframework.beans.factory.support.AbstractBeanFactory#getObjectForBeanInstance

在这一步中,会判断 sharedInstance 类型,若是属于 FactoryBean,将会调用用户自定义 FactoryBeangetObject() 方法进行 bean 初始化。

实例化的真正类型是 getObjectType() 方法定义的类型,不是 FactoryBean 原来自己的类型。最终在容器中注册的是 getObject() 返回的 bean

提早讲了这个概念,但愿你们在最后一步时不会对这个有所迷惑。


从缓存中获取单例 bean

// Eagerly check singleton cache for manually registered singletons.
// 检查缓存中或者实例工厂是否有对应的实例或者从 singletonFactories 中的 ObjectFactory 中获取
Object sharedInstance = getSingleton(beanName);

protected Object getSingleton(String beanName, boolean allowEarlyReference) {
	Object singletonObject = this.singletonObjects.get(beanName);
	// 检查缓存中是否存在实例
	if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
		// 记住,公共变量都须要加锁操做,避免多线程并发修改
		synchronized (this.singletonObjects) {
			// 若是此 bean 正在加载则不处理
			singletonObject = this.earlySingletonObjects.get(beanName);
			if (singletonObject == null && allowEarlyReference) {
				// 当某些方法须要提早初始化,调用 addSingletonFactory 方法将对应的
				// objectFactory 初始化策略存储在 singletonFactories
				ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
				if (singletonFactory != null) {
					singletonObject = singletonFactory.getObject();
					this.earlySingletonObjects.put(beanName, singletonObject);
					this.singletonFactories.remove(beanName);
				}
			}
		}
	}
	return singletonObject;
}
复制代码

单例模式在代码设计中常常用到,在 Spring 中,同一个容器的单例只会被建立一次,后续再获取 bean 直接从单例缓存 singletonObjects 中进行获取。

并且由于单例缓存是公共变量,因此对它进行操做的时候,都进行了加锁操做,避免了多线程并发修改或读取的覆盖操做。

还有这里有个 earlySingletonObjects 变量,它也是单例缓存,也是用来保存 beanName 和 建立 bean 实例之间的关系。

singletonFactories 不一样的是,当一个单例 bean 被放入到这 early 单例缓存后,就要从 singletonFactories 中移除,二者是互斥的,主要用来解决循环依赖的问题。(循环依赖下一篇再详细讲吧)


从 bean 的实例中获取对象

getBean 方法中,getObjectForBeanInstance 是个高频方法,在单例缓存中得到 bean 仍是 根据不一样 scope 策略加载 bean,都有这个方法的出现,因此结合刚才说的 BeanFactory 概念,一块儿来看下这个方法作了什么。

org.springframework.beans.factory.support.AbstractBeanFactory#getObjectForBeanInstance

// 返回对应的实例,有时候存在诸如 BeanFactory 的状况并非直接返回实例自己
// 而是返回指定方法返回的实例
bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
复制代码

具体方法实现,搜索 注释 4.6 看代码中的注释吧:

get_object_from_factory_bean

交代一下这个方法的流程:

  • 验证 bean 类型:判断是不是工厂 bean
  • 对非 FactoryBean 不作处理
  • bean 进行转换
  • 处理 FactoryBean 类型:委托给 getObjectFromFactoryBean 方法进行处理。

在这个方法中,对工厂 bean 有特殊处理,处理方法跟上面提到的 FactoryBean 使用同样,最终获取的是 FactoryBean.getObject() 方法返回的类型。

对于第四个步骤,委托给 getObjectFromFactoryBean 方法进行处理不深刻分析,但里面有三个方法值得一说:

// 单例操做,前置操做
beforeSingletonCreation(beanName);
try {
	object = postProcessObjectFromFactoryBean(object, beanName);
}
catch (Throwable ex) {
	throw new BeanCreationException(beanName,
			"Post-processing of FactoryBean's singleton object failed", ex);
}
finally {
	// 单例模式,后置操做
	afterSingletonCreation(beanName);
}
复制代码

代码中在类的加载时,有前置操做和后置操做,以前在第一篇笔记看过,不少前置和后置操做都是空方法,等用户自定义扩展用的。

但在这里的不是空方法,在两个方法是用来保存和移除类加载的状态,是用来对循环依赖进行检测的。

同时,这两个方法在不一样 scope 加载 bean 时也有使用到,也是个高频方法。

try {
	object = postProcessObjectFromFactoryBean(object, beanName);
}
catch (Throwable ex) {
	throw new BeanCreationException(beanName, "Post-processing of FactoryBean's object failed", ex);
}
复制代码

这是一个执行后处理的方法,我接触的很少,先记下概念:

Spring 获取 bean 的规则中有一条:尽量保证全部 bean 初始化后都会调用注册的 BeanPostProcessor 的 postProcessAfterInitialization 方法进行处理。在实际开发中,能够针对这个特性进行扩展。


获取单例

如今来到时序图中的 1.3 步骤:

// Create bean instance. 建立 bean 实例
// singleton 单例模式(最常使用)
if (mbd.isSingleton()) {
    // 第二个参数的回调接口,接口是 org.springframework.beans.factory.ObjectFactory#getObject
    // 接口实现的方法是 createBean(beanName, mbd, args)
	sharedInstance = getSingleton(beanName, () -> {
		return createBean(beanName, mbd, args);
		// 省略了 try / catch
	});
	bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
复制代码

来看 getSingleton 方法作了什么:

public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
	Assert.notNull(beanName, "Bean name must not be null");
	// 注释 4.7 全局变量,加锁
	synchronized (this.singletonObjects) {
		// 检查是否已经被加载了,单例模式就是能够复用已经建立的 bean
		Object singletonObject = this.singletonObjects.get(beanName);
		if (singletonObject == null) {
			// 初始化前操做,校验是否 beanName 是否有别的线程在初始化,并加入初始化状态中
			beforeSingletonCreation(beanName);
			boolean newSingleton = false;
			boolean recordSuppressedExceptions = (this.suppressedExceptions == null);
			if (recordSuppressedExceptions) {
				this.suppressedExceptions = new LinkedHashSet<>();
			}
			// 初始化 bean,这个就是刚才的回调接口调用的方法,实际执行的是 createBean 方法
			singletonObject = singletonFactory.getObject();
			newSingleton = true;
			if (recordSuppressedExceptions) {
				this.suppressedExceptions = null;
			}
			// 初始化后的操做,移除初始化状态
			afterSingletonCreation(beanName);
			if (newSingleton) {
				// 加入缓存
				addSingleton(beanName, singletonObject);
			}
		}
		return singletonObject;
	}
}
复制代码

来梳理一下流程:

  • 检查缓存是否已经加载过
  • 没有加载,记录 beanName 的加载状态
  • 调用回调接口,实例化 bean
  • 加载单例后的处理方法调用:这一步就是移除加载状态
  • 将结果记录到缓存并删除加载 bean 过程当中所记录到的各类辅助状态

对于第二步和第四步,在前面已经提到,用来记录 bean 的加载状态,是用来对 循环依赖 进行检测的,这里先略过不说。

关键的方法在于第三步,调用了 ObjectFactorygetObject() 方法,实际回调接口实现的是 createBean() 方法,须要往下了解,探秘 createBean()


准备建立 bean

对于书中,有句话说的很到位:

Spring 源码中,一个真正干活的函数实际上是以 do 开头的,好比 doGetBeandoGEtObjectFromFactoryBean,而入口函数,好比 getObjectFromFactoryBean,实际上是从全局角度去作统筹工做。

有了这个概念后,看以后的 Spring 源码,都知道这个套路,在入口函数了解总体流程,而后重点关注 do 开头的干活方法。

按照这种套路,咱们来看这个入口方法 createBean()

org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBean(java.lang.String, org.springframework.beans.factory.support.RootBeanDefinition, java.lang.Object[])

protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) {
	RootBeanDefinition mbdToUse = mbd;
	// 有道翻译:确保此时bean类已经被解析,而且克隆 bean 定义,以防动态解析的类不能存储在共享合并 bean 定义中。
	// 锁定 class,根据设置的 class 属性或者根据 className 来解析 Class
	Class<?> resolvedClass = resolveBeanClass(mbd, beanName);
	if (resolvedClass != null && !mbd.hasBeanClass() && mbd.getBeanClassName() != null) {
		mbdToUse = new RootBeanDefinition(mbd);
		mbdToUse.setBeanClass(resolvedClass);
	}
	// Prepare method overrides.
	// 验证及准备覆盖的方法
    mbdToUse.prepareMethodOverrides();
    // 让 beanPostProcessor 有机会返回代理而不是目标bean实例。
    Object bean = resolveBeforeInstantiation(beanName, mbdToUse);
    if (bean != null) {
    	// 短路操做,若是代理成功建立 bean 后,直接返回
    	return bean;
    }
	
	// 建立 bean
	Object beanInstance = doCreateBean(beanName, mbdToUse, args);
	return beanInstance;
}
复制代码

先来总结这个流程:

  • 根据设置的 class 属性或者根据 className 来解析 Class
  • 验证及准备覆盖的方法 这个方法是用来处理如下两个配置的:咱们在解析默认标签时,会识别 lookup-methodreplaced-method 属性,而后这两个配置的加载将会统一存放在 beanDefinition 中的 methodOverrides 属性里。
  • 应用初始化前的后处理器,解析指定 bean 是否存在初始化前的短路操做
  • 建立 bean

下面来说下这几个主要步骤


处理 Override 属性

public void prepareMethodOverrides() throws BeanDefinitionValidationException {
	// Check that lookup methods exists.
	if (hasMethodOverrides()) {
		Set<MethodOverride> overrides = getMethodOverrides().getOverrides();
		synchronized (overrides) {
			for (MethodOverride mo : overrides) {
				// 处理 override 属性
				prepareMethodOverride(mo);
			}
		}
	}
}
复制代码

能够看到,获取类的重载方法列表,而后遍历,一个一个进行处理。具体处理的是 lookup-methodreplaced-method 属性,这个步骤解析的配置将会存入 beanDefinition 中的 methodOverrides 属性里,是为了待会实例化作准备。

若是 bean 在实例化时,监测到 methodOverrides 属性,会动态地位当前 bean 生成代理,使用对应的拦截器为 bean 作加强处理。

(我是不推荐在业务代码中使用这种方式,定位问题和调用都太麻烦,一不当心就会弄错=-=)


实例化前的前置处理

// 让 beanPostProcessor 有机会返回代理而不是目标bean实例。
Object bean = resolveBeforeInstantiation(beanName, mbdToUse);
if (bean != null) {
	// 短路操做,若是代理成功建立 bean 后,直接返回
	return bean;
}

protected Object resolveBeforeInstantiation(String beanName, RootBeanDefinition mbd) {
	Object bean = null;
	if (!Boolean.FALSE.equals(mbd.beforeInstantiationResolved)) {
		// Make sure bean class is actually resolved at this point.
		if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
			Class<?> targetType = determineTargetType(beanName, mbd);
			if (targetType != null) {
			    // 执行前置拦截器的操做
				bean = applyBeanPostProcessorsBeforeInstantiation(targetType, beanName);
				if (bean != null) {
				    // 执行后置拦截器的操做
					bean = applyBeanPostProcessorsAfterInitialization(bean, beanName);
				}
			}
		}
		mbd.beforeInstantiationResolved = (bean != null);
	}
	return bean;
}
复制代码

doCreateBean 方法前,有一个短路操做,若是后处理器成功,将会返回代理的 bean

resolveBeforeInstantiation 方法中,在确保 bean 信息已经被解析完成,执行了两个关键方法,从注释中看到,一个是前置拦截器的操做,另外一个就是后置拦截器的操做。

若是第一个前置拦截器实例化成功,就已经将单例 bean 放入缓存中,它不会再经历普通 bean 的建立过程,没有机会进行后处理器的调用,因此在这里的第二个步骤,就是为了这个 bean 也能应用后处理器的 postProcessAfterInitialization 方法。


建立 bean

终于到了关键的干活方法:doGetBean。在经过上一个方法校验,没有特定的前置处理,因此它是一个普通 bean, 常规 bean 进行建立在 doGetBean 方法中完成。

protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args) {
	// Instantiate the bean.
	BeanWrapper instanceWrapper = null;
	if (mbd.isSingleton()) {
		instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
	}
	if (instanceWrapper == null) {
		// 注释 4.8 根据指定 bean 使用对应的策略建立新的实例 例如跟进方法去看,有工厂方法,构造函数自动注入,简单初始化
		instanceWrapper = createBeanInstance(beanName, mbd, args);
	}
	final Object bean = instanceWrapper.getWrappedInstance();
	Class<?> beanType = instanceWrapper.getWrappedClass();
	if (beanType != NullBean.class) {
		mbd.resolvedTargetType = beanType;
	}
	// 容许后处理程序修改合并的bean定义
	synchronized (mbd.postProcessingLock) {
		if (!mbd.postProcessed) {
			applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);
			mbd.postProcessed = true;
		}
	}
	// 是否须要提早曝光,用来解决循环依赖时使用
	boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
			isSingletonCurrentlyInCreation(beanName));
	if (earlySingletonExposure) {
		// 第二个参数是回调接口,实现的功能是将切面动态织入 bean
		addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
	}
	Object exposedObject = bean;
    // 对 bean 进行填充,将各个属性值注入
    // 若是存在对其它 bean 的依赖,将会递归初始化依赖的 bean
    populateBean(beanName, mbd, instanceWrapper);
    // 调用初始化方法,例如 init-method
    exposedObject = initializeBean(beanName, exposedObject, mbd);
	
	if (earlySingletonExposure) {
		Object earlySingletonReference = getSingleton(beanName, false);
		// earlySingletonReference 只有在检测到有循环依赖的状况下才 不为空
		if (earlySingletonReference != null) {
			if (exposedObject == bean) {
				// 若是 exposedObject 没有在初始化方法中被改变,也就是没有被加强
				exposedObject = earlySingletonReference;
			}
			else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) {
				String[] dependentBeans = getDependentBeans(beanName);
				Set<String> actualDependentBeans = new LinkedHashSet<>(dependentBeans.length);
				for (String dependentBean : dependentBeans) {
					// 检查依赖
					if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) {
						actualDependentBeans.add(dependentBean);
					}
				}
				// bean 建立后,它所依赖的 bean 必定是已经建立了
				// 在上面已经找到它有依赖的 bean,若是 actualDependentBeans 不为空
				// 表示还有依赖的 bean 没有初始化完成,也就是存在循环依赖
				if (!actualDependentBeans.isEmpty()) {
					throw new BeanCurrentlyInCreationException(beanName);
			}
		}
	}
	// Register bean as disposable.
	// 根据 scope 注册 bean
	registerDisposableBeanIfNecessary(beanName, bean, mbd);
	return exposedObject;
}
复制代码

看到这么长的代码,感受有点头晕,因此先来梳理这个方法的流程:

  1. 若是加载的 bean 是单例,要清除缓存
  2. 实例化 bean,将 BeanDifinition 转化成 BeanWrapper
  3. 后处理器修改合并后的 bean 定义: bean 合并后的处理,Autowired 注解正式经过此方法实现诸如类型的预解析
  4. 依赖处理
  5. 属性填充:将全部属性填充到 bean 的实例中
  6. 循环依赖检查
  7. 注册 DisposableBean:这一步是用来处理 destroy-method 属性,在这一步注册,以便在销毁对象时调用。
  8. 完成建立并返回

从上面流程能够看出,这个方法作了不少事情,以致于代码超过了 100 多行,给人的阅读体验差,因此尽可能仍是拆分小方法,在入口方法尽可能简洁,说明作的事情,具体在小方法中完成。

由于这个建立过程的代码不少和复杂,我挑重点来理解和学习,详细的还有待深刻学习


建立 bean 的实例

在上面第二个步骤,作的是实例化 bean,而后返回 BeanWrapper

protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, Object[] args) {
	// Make sure bean class is actually resolved at this point.
	Class<?> beanClass = resolveBeanClass(mbd, beanName);
	Supplier<?> instanceSupplier = mbd.getInstanceSupplier();
	// Shortcut when re-creating the same bean...
	boolean resolved = false;
	boolean autowireNecessary = false;
	if (args == null) {
		synchronized (mbd.constructorArgumentLock) {
			// 若是一个类有多个构造函数,每一个构造函数都有不一样的参数,调用前须要进行判断对应的构造函数或者工厂方法
			if (mbd.resolvedConstructorOrFactoryMethod != null) {
				resolved = true;
				autowireNecessary = mbd.constructorArgumentsResolved;
			}
		}
	}
	// 若是已经解析过,不须要再次解析
	if (resolved) {
		if (autowireNecessary) {
			// 实际解析的是 org.springframework.beans.factory.support.ConstructorResolver.autowireConstructor
			// 构造函数自动注入(若是参数有不少个,在匹配构造函数可复杂了,不敢细看=-=)
			return autowireConstructor(beanName, mbd, null, null);
		}
		else {
			// 使用默认的构造函数
			return instantiateBean(beanName, mbd);
		}
	}
    // Candidate constructors for autowiring? 须要根据参数解析构造函数
	Constructor<?>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName);
	if (ctors != null || mbd.getResolvedAutowireMode() == AUTOWIRE_CONSTRUCTOR ||
			mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) {
		return autowireConstructor(beanName, mbd, ctors, args);
	}
	// Preferred constructors for default construction?
	ctors = mbd.getPreferredConstructors();
	if (ctors != null) {
		// 构造函数注入
		return autowireConstructor(beanName, mbd, ctors, null);
	}
	// No special handling: simply use no-arg constructor. 没有特殊的处理,使用默认构造函数构造
	return instantiateBean(beanName, mbd);
}
复制代码

大体介绍功能:

  • 若是存在工厂方法则使用工厂方法进行初始化
  • 一个类有多个构造函数,每一个构造函数都有不一样的参数,因此须要根据参数锁定构造函数进行 bean 的实例化: 在这一步我是真心服,为了匹配到特定的构造函数,下了很大的功夫,感兴趣的能够定位到这个函数观看 org.springframework.beans.factory.support.ConstructorResolver.autowireConstructor
  • 若是即不存在工厂方法,也不存在带有参数的构造函数,会使用默认的构造函数进行 bean 的实例化

在这个流程中,经过两种方式,一种是工厂方法,另外一种就是构造函数,将传进来的 RootBeanDefinition 中的配置二选一辈子成 bean 实例

具体的不往下跟踪,来看下一个步骤


处理循环依赖

// 是否须要提早曝光,用来解决循环依赖时使用
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
		isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
	// 第二个参数是回调接口,实现的功能是将切面动态织入 bean
	addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
复制代码

关键方法是 addSingletonFactory,完成的做用:在 bean 初始化完成前将建立实例的 ObjectFactory 加入单例工厂

一开始就讲过, ObjectFactory 是建立对象时使用的工厂。在对象实例化时,会判断本身依赖的对象是否已经建立好了,判断的依据是查看依赖对象的 ObjectFactory 是否在单例缓存中,若是没有建立将会先建立依赖的对象,而后将 ObjectFactory 放入单例缓存。

这时若是有循环依赖,须要提早对它进行暴露,让依赖方找到并正常实例化。

循环依赖解决方案在下一篇再细讲吧。


属性注入

这也是个高频方法,在初始化的时候要对属性 property 进行注入,贴一些代码片断:

populateBean(beanName, mbd, instanceWrapper);

protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
	// 给 awareBeanPostProcessor 后处理器最后一次机会,在属性设置以前修改bean的属性
	boolean continueWithPropertyPopulation = true;
	if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
		...
        if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {
			continueWithPropertyPopulation = false;
			break;
		}
        ...
	}
	PropertyValues pvs = (mbd.hasPropertyValues() ? mbd.getPropertyValues() : null);
	int resolvedAutowireMode = mbd.getResolvedAutowireMode();
	if (resolvedAutowireMode == AUTOWIRE_BY_NAME || resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
		MutablePropertyValues newPvs = new MutablePropertyValues(pvs);
		// Add property values based on autowire by name if applicable.
		if (resolvedAutowireMode == AUTOWIRE_BY_NAME) {
			// 根据名字自动注入
			autowireByName(beanName, mbd, bw, newPvs);
		}
		// Add property values based on autowire by type if applicable.
		if (resolvedAutowireMode == AUTOWIRE_BY_TYPE) {
			// 根据类型自动注入
			autowireByType(beanName, mbd, bw, newPvs);
		}
		pvs = newPvs;
	}
	// 后处理器已经初始化
	boolean hasInstAwareBpps = hasInstantiationAwareBeanPostProcessors();
	// 须要依赖检查
	boolean needsDepCheck = (mbd.getDependencyCheck() != AbstractBeanDefinition.DEPENDENCY_CHECK_NONE);
	PropertyDescriptor[] filteredPds = null;
    // 从 beanPostProcessors 对象中提取 BeanPostProcessor 结果集,遍历后处理器
    for (BeanPostProcessor bp : getBeanPostProcessors()) {
    	...
    }
	// 在前面也出现过,用来进行依赖检查
    filteredPds = filterPropertyDescriptorsForDependencyCheck(bw, mbd.allowCaching);
    checkDependencies(beanName, mbd, filteredPds, pvs);
	// 将属性应用到 bean 中,使用深拷贝,将子类的属性一并拷贝
	applyPropertyValues(beanName, mbd, bw, pvs);
}
复制代码

因为代码太长,感兴趣的小伙伴定位到 注释 4.11 位置查看吧

介绍一下处理流程:

  1. 调用 InstantiationAwareBeanPostProcessor 处理器的 postProcessAfterInstantiation 方法,判断控制程序是否继续进行属性填充
  2. 根据注入类型(byName/byType),提取依赖的 bean,统一存入 PropertyValues
  3. 判断是否须要进行 BeanPostProcessor 和 依赖检查:
  • 若是有后处理器,将会应用 InstantiationAwareBeanPostProcessor 处理器的 postProcessProperties 方法,对属性获取完毕填充前,对属性进行再次处理。
  • 使用 checkDependencies 方法来进行依赖检查
  1. 将全部解析到的 PropertyValues 中的属性填充至 BeanWrapper 中。

在这个方法中,根据不一样的注入类型进行属性填充,而后调用后处理器进行处理,最终将属性应用到 bean 中。

这里也不细说,继续往下走,看下一个方法


初始化 bean

在配置文件中,在使用 <bean> 标签时,使用到了 init-method 属性,这个属性的做用就是在这个地方使用的:bean 实例化前,调用 init-method 指定的方法来根据用户业务进行相应的实例化。来看下入口方法 initializeBean

// 调用初始化方法,例如 init-method
exposedObject = initializeBean(beanName, exposedObject, mbd);

protected Object initializeBean(final String beanName, final Object bean, @Nullable RootBeanDefinition mbd) {
	// 注释 4.12 securityManage 是啥,不肯定=-=
	if (System.getSecurityManager() != null) {
		AccessController.doPrivileged((PrivilegedAction<Object>) () -> {
			invokeAwareMethods(beanName, bean);
			return null;
		}, getAccessControlContext());
	}
	else {
		// 若是没有 securityManage,方法里面校验了 bean 的类型,须要引用 Aware 接口
		// 对特殊的 bean 处理:Aware/ BeanClassLoader / BeanFactoryAware
		invokeAwareMethods(beanName, bean);
	}
	Object wrappedBean = bean;
	if (mbd == null || !mbd.isSynthetic()) {
		// 熟悉么,后处理器又来了
		wrappedBean = applyBeanPostProcessorsBeforeInitialization(wrappedBean, beanName);
	}
	// 激活用户自定义的 init-method 方法
	invokeInitMethods(beanName, wrappedBean, mbd);
	if (mbd == null || !mbd.isSynthetic()) {
		wrappedBean = applyBeanPostProcessorsAfterInitialization(wrappedBean, beanName);
	}
	return wrappedBean;
}
复制代码

这个方法主要是用来进行咱们设定的初始化方法的调用,不过在方法内部,还作了其它操做,因此一块儿来说下流程:

一、激活 Aware 方法

Spring 中提供了一些 Aware 接口,实现了这个接口的 bean,在被初始化以后,能够取得一些相对应的资源,例如 BeanFactoryAware,在初始化后, Spring 容器将会注入 BeanFactory 的实例。因此若是须要获取这些资源,请引用 Aware 接口。

二、执行后处理器

相信这个你们已经不陌生了,咱们能够在诸如 PostProcessor 等后处理器里面自定义,实现修改和扩展。例如 BeanPostProcessor 类中有 postProcessBeforeInitializationpostProcessAfterInitialization,能够对 bean 加载先后进行逻辑扩展,能够将它理解成切面 AOP 的思想。

三、激活自定义的 init 方法

这个方法用途很明显,就是找到用户自定义的构造函数,而后调用它。要注意的是,若是 beanInitializingBean 类型话,须要调用 afterPropertiesSet 方法。

执行顺序是先 afterPropertiesSet,接着才是 init-method 定义的方法。


注册 disposableBean

这是 Spring 提供销毁方法的扩展入口,Spring 爸爸将咱们能考虑和想扩展的口子都给预留好。除了经过 destroy-method 属性配置销毁方法外,还能够注册后处理器 DestructionAwareBeanPostProcessor 来统一处理 bean 的销毁方法:

protected void registerDisposableBeanIfNecessary(String beanName, Object bean, RootBeanDefinition mbd) {
	AccessControlContext acc = (System.getSecurityManager() != null ? getAccessControlContext() : null);
	if (!mbd.isPrototype() && requiresDestruction(bean, mbd)) {
		if (mbd.isSingleton()) {
			// 单例模式
			// 注册 DisposableBean
			registerDisposableBean(beanName,
					new DisposableBeanAdapter(bean, beanName, mbd, getBeanPostProcessors(), acc));
		}
		else {
			// A bean with a custom scope...
			Scope scope = this.scopes.get(mbd.getScope());
			scope.registerDestructionCallback(beanName,
					new DisposableBeanAdapter(bean, beanName, mbd, getBeanPostProcessors(), acc));
		}
	}
}
复制代码

这里就是往不一样的 scope 下, 进行 disposableBean 的注册。


总结

本篇笔记总结了类加载的过程,结合时序图和代码分析,但愿对它能有一个更深的了解。

同时对代码编写也有一点感触:

  1. 不要写过长的方法,尽可能拆分红小方法,清晰意图

从一开始看 Spring 源码的时候,就惊叹于它代码的整洁和逻辑清晰,入口方法展现须要作的事情,而后工做具体逻辑细分,体现了代码设计者的高超设计。

因此在看到有几个方法超过 100 行,心中小小吐槽了一下,看来我跟大佬们写的代码也有共同点,那就是还能够进行优化哈哈哈~

  1. 要在关键地方都打上日志,方便排查和定位

我截取的代码片断,因为篇幅缘由,有些逻辑判断和日志处理都给摘掉了,可是日志管理是很重要的一环,在关键地方打印日志,在以后排查问题和分析数据都会有帮助。

若是懒得打印日志,在关键的地方没有打印日志,即使出现了问题,也不知道从何查起,致使问题的缘由迟迟没法暴露,形成用户的投诉,那就得不偿失了。

因为我的技术有限,若是有理解不到位或者错误的地方,请留下评论,我会根据朋友们的建议进行修正

spring-analysis-note 码云 Gitee 地址

spring-analysis-note Github 地址


参考资料

  1. Spring Core Container 源码分析三:Spring Beans 初始化流程分析

  2. Spring 源码深度解析 / 郝佳编著. -- 北京 : 人民邮电出版社


传送门:

相关文章
相关标签/搜索