问题:数组
Given a list of non-negative numbers and a target integer k, write a function to check if the array has a continuous subarray of size at least 2 that sums up to the multiple of k, that is, sums up to n*k where n is also an integer.spa
Example 1:ip
Input: [23, 2, 4, 6, 7], k=6 Output: True Explanation: Because [2, 4] is a continuous subarray of size 2 and sums up to 6.
Example 2:rem
Input: [23, 2, 6, 4, 7], k=6 Output: True Explanation: Because [23, 2, 6, 4, 7] is an continuous subarray of size 5 and sums up to 42.
Note:get
解决:it
① 这道题给了咱们一个数组和一个数字k,让咱们求是否存在这样的一个连续的子数组,该子数组的数组之和能够整除k。io
遍历全部的子数组,而后利用累加和来快速求和。在获得每一个子数组之和时,咱们先和k比较,若是相同直接返回true,不然再判断,若k不为0,且sum能整除k,一样返回true,最后遍历结束返回false。ast
class Solution {//78ms
public boolean checkSubarraySum(int[] nums, int k) {
for (int i = 0;i < nums.length;i ++){
int sum = nums[i];
for (int j = i + 1;j < nums.length;j ++){
sum += nums[j];
if (sum == k) return true;
if (k != 0 && sum % k == 0) return true;
}
}
return false;
}
}function
② 若数字 a 和 b 分别除以数字 c,若获得的余数相同,那么(a - b)一定可以整除 c。class
一、处理k为0的状况;二、用HashMap保存sum对k取余数,若是前序有余数也为sum % k的位置,那么就存在连续子数组和为k的倍数。
在discuss中看到的。。。。。。。。
class Solution { //13ms public boolean checkSubarraySum(int[] nums, int k) { // 23 2 4 6 7 ===> 23 % 6 ==> 5 % 6 ==> 5 + 2 ==> 7 % 6 ==> 1 + 4 ==> 5 % 6 ==> 5 + 6 ==> 5 % 6 ==> 12 % 6==> 0 HashMap<Integer,Integer> map = new HashMap<Integer,Integer>(); map.put(0,-1); int remainingSum = 0; for(int i = 0 ; i < nums.length ; i ++){ remainingSum += nums[i]; if(k != 0) remainingSum %= k; if(map.containsKey(remainingSum)){ int pre = map.get(remainingSum); if(i - pre > 1) return true; }else map.put(remainingSum , i); } return false; } }