PageRank 算法-Google 如何给网页排名

公号:码农充电站pro
主页:https://codeshellme.github.iohtml

在互联网早期,随着网络上的网页逐渐增多,如何从海量网页中检索出咱们想要的页面,变得很是的重要。python

当时著名的雅虎和其它互联网公司都试图解决这个问题,但都没能有一个很好的解决方案。git

直到1998 年先后,两位斯坦福大学的博士生,拉里·佩奇和谢尔盖·布林一块儿发明了著名的 PageRank 算法,才完美的解决了网页排名的问题。也正是由于这个算法,诞生了伟大的 Google 公司。github

在这里插入图片描述
(上图中:左为布林右为佩奇。)算法

1,PageRank 算法原理

PageRank 算法的核心原理是:在互联网中,若是一个网页被不少其它网页所连接,说明该网页很是的重要,那么它的排名就高shell

拉里·佩奇将整个互联网当作一张大的图,每一个网站就像一个节点,而每一个网页的连接就像一个弧。那么,互联网就能够用一个图或者矩阵来描述。数组

拉里·佩奇也因该算法在30 岁时当选为美国工程院院士。网络

假设目前有4 个网页,分别是 A,B,C,D,它们的连接关系以下:数据结构

在这里插入图片描述
咱们规定有两种链:工具

  • 出链:从自身引出去的链。
  • 入链:从外部引入自身的链。

好比图中的C 网页,有两个入链,一个出链。

PageRank 的思想就是,一个网页的影响力就等于它的全部入链的影响力之和

用数学公式表示为:

在这里插入图片描述

其中(分值表明页面影响力):

  • PR(u) 是网页u 的分值。
  • Bu 是网页u 的入链集合。
  • 网页v 是网页u 的任意一个入链。
  • PR(v) 是网面v 的分值。
  • L(v) 是网页v 的出链数量。
  • 网页v 带给网页u 的分值就是 PR(v) / L(v)
  • 那么PR(u) 就等于全部的入链分值之和。

在上面的公式中,咱们假设从一个页面v 到达它的全部的出链页面的几率是相等的

好比上图来讲,页面A 有三个出链分别连接到了 B、C、D 上。那么当用户访问 A 的时候,就有跳转到 B、C 或者 D 的可能性,跳转几率均为 1/3

2,计算网页的分值

下面来看下如何计算网页的分值。

咱们能够用一个表格,来表示上图中的网页的连接关系,及每一个页面到其它页面的几率:

A B C D
A 0 A->A 1/2 B->A 1 C->A 0 D->A
B 1/3 A->B 0 B->B 0 C->B 1/2 D->B
C 1/3 A->C 0 B->C 0 C->C 1/2 D->C
D 1/3 A->D 1/2 B->D 0 C->D 0 D->D

根据这个表格中的数字,能够将其转换成一个矩阵M

在这里插入图片描述

假设 A、B、C、D 四个页面的初始影响力都是相同的,都为 1/4,即:

在这里插入图片描述

通过第一次分值转移以后,能够获得 W1,以下:

在这里插入图片描述

同理能够获得W2W3 一直到 Wn

  • W2 = M * W1
  • W3 = M * W2
  • Wn = M * Wn-1

那么何时计算终止呢?

佩奇和布林已经证实,无论网页的初识值选择多少(咱们这假设都是1/4),最终都能保证网页的分值可以收敛到一个真实肯定值。

也就是直到 Wn 再也不变化为止。

这就是网页分值的计算过程,仍是比较好理解的。

3,PageRank 的两个问题

咱们上文中介绍到的是PageRank 的基本原理,是简化版本。在实际应用中会出现等级泄露(RankLeak)和等级沉没(Rank Sink)的问题。

若是一个网页没有出链,就会吸取其它网页的分值不释放,最终会致使其它网页的分值为0,这种现象叫作等级泄露。以下图中的网页C

在这里插入图片描述

相反,若是一个网页没有入链,最终会致使该网页的分值为0,这种现象叫作等级沉没。以下图中的网页C

在这里插入图片描述

4,PageRank 的随机浏览模型

为了解决上面的问题,拉里·佩奇提出了随机浏览模型,即用户并不都是依靠网页连接来访问网页,也有可能用其它方式访问网址,好比输入网址。

所以,提出了阻尼因子的概念,这个因子表明用户按照跳转连接来上网的几率,而 1-d 则表明用户经过其它方式访问网页的几率。

因此,将上文中的公式改进为:

在这里插入图片描述

其中:

  • d 为阻尼因子,一般能够取0.85
  • N 为网页总数。

5,用代码计算网页分值

如何用代码来计算网页的PR 分值呢?(为了方便查看,我把上图放在这里)

在这里插入图片描述

咱们能够看到,该图实际上就是数据结构中的有向图,所以咱们能够经过构建有向图来构建 PageRank 算法。

NetworkX 是一个Python 工具包,其中集成了经常使用的图结构和网络分析算法

咱们能够用 NetworkX 来构建上图中的网络结构。

首先引入模块:

import networkx as nx

DiGraph 类建立有向图:

G = nx.DiGraph()

将4 个网页的连接关系,用数组表示:

edges = [
  ("A", "B"), ("A", "C"), ("A", "D"), 
  ("B", "A"), ("B", "D"), 
  ("C", "A"), 
  ("D", "B"), ("D", "C")
  ]

数组中的元素做为有向图的边,并添加到图中:

for edge in edges:    
    G.add_edge(edge[0], edge[1])

使用pagerank 方法计算PR 分值:

# alpha 为阻尼因子
PRs = nx.pagerank(G, alpha=1)
print PRs

输出每一个网页的PR 值:

{'A': 0.33333396911621094, 
 'B': 0.22222201029459634, 
 'C': 0.22222201029459634, 
 'D': 0.22222201029459634}

最终,咱们计算出了每一个网页的PR 值。

6,画出网络图

NetworkX 包中还提供了画出网络图的方法:

import matplotlib.pyplot as plt

# 画网络图
nx.draw_networkx(G)
plt.show()

以下:

在这里插入图片描述

咱们还能够设置图的形状,节点的大小,边的长度等属性,具体能够点击这里查看。

更多关于 NetworkX 的内容能够参考其官方文档

7,总结

PageRank 算法给了咱们一个很重要的启发,权重在不少时候是一个很是重要的指标。

  • 好比在人际交往中,我的的影响力不只取决于你的朋友的数量,并且朋友的质量很是重要,说明了圈子的重要性。
  • 好比在自媒体时代,粉丝数并不能真正的表明你的影响力,粉丝的质量也很重要。若是你的粉丝中有不少大V,那么将大大增长你影响力。

本篇文章主要介绍了:

  • PageRank 算法的原理。
  • 简化版的PageRank 算法遇到的问题,以及解决方案:
    • 等级泄露和等级沉没。
    • 引出随机浏览模型来解决这两个问题。
  • 如何用代码模拟PageRank 算法:

(本节完。)


推荐阅读:

决策树算法-理论篇-如何计算信息纯度

决策树算法-实战篇-鸢尾花及波士顿房价预测

朴素贝叶斯分类-理论篇-如何经过几率解决分类问题

朴素贝叶斯分类-实战篇-如何进行文本分类

计算机如何理解事物的相关性-文档的类似度判断


欢迎关注做者公众号,获取更多技术干货。

码农充电站pro

相关文章
相关标签/搜索